千家信息网

怎么理解PostgreSQL的分区表

发表于:2025-02-01 作者:千家信息网编辑
千家信息网最后更新 2025年02月01日,本篇内容主要讲解"怎么理解PostgreSQL的分区表",感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习"怎么理解PostgreSQL的分区表"吧!在PG中,分
千家信息网最后更新 2025年02月01日怎么理解PostgreSQL的分区表

本篇内容主要讲解"怎么理解PostgreSQL的分区表",感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习"怎么理解PostgreSQL的分区表"吧!

在PG中,分区表通过"继承"的方式实现,这里就会存在一个问题,就是在插入数据时,PG如何确定数据应该插入到哪个目标分区?在PG中,通过函数ExecPrepareTupleRouting为路由待插入的元组做准备,主要的目的是确定元组所在的分区。

一、数据结构

ModifyTable
ModifyTable Node
通过插入、更新或删除,将子计划生成的行应用到结果表。

/* ---------------- *   ModifyTable node - *      Apply rows produced by subplan(s) to result table(s), *      by inserting, updating, or deleting. *      通过插入、更新或删除,将子计划生成的行应用到结果表。 * * If the originally named target table is a partitioned table, both * nominalRelation and rootRelation contain the RT index of the partition * root, which is not otherwise mentioned in the plan.  Otherwise rootRelation * is zero.  However, nominalRelation will always be set, as it's the rel that * EXPLAIN should claim is the INSERT/UPDATE/DELETE target. * 如果最初命名的目标表是分区表,则nominalRelation和rootRelation都包含分区根的RT索引,计划中没有另外提到这个索引。 * 否则,根关系为零。但是,总是会设置名义关系,nominalRelation因为EXPLAIN应该声明的rel是INSERT/UPDATE/DELETE目标关系。 *  * Note that rowMarks and epqParam are presumed to be valid for all the * subplan(s); they can't contain any info that varies across subplans. * 注意,rowMarks和epqParam被假定对所有子计划有效; * 它们不能包含任何在子计划中变化的信息。 * ---------------- */typedef struct ModifyTable{    Plan        plan;    CmdType     operation;      /* 操作类型;INSERT, UPDATE, or DELETE */    bool        canSetTag;      /* 是否需要设置tag?do we set the command tag/es_processed? */    Index       nominalRelation;    /* 用于EXPLAIN的父RT索引;Parent RT index for use of EXPLAIN */    Index       rootRelation;   /* 根Root RT索引(如目标为分区表);Root RT index, if target is partitioned */    bool        partColsUpdated;    /* 更新了层次结构中的分区关键字;some part key in hierarchy updated */    List       *resultRelations;    /* RT索引的整型链表;integer list of RT indexes */    int         resultRelIndex; /* 计划链表中第一个resultRel的索引;index of first resultRel in plan's list */    int         rootResultRelIndex; /* 分区表根索引;index of the partitioned table root */    List       *plans;          /* 生成源数据的计划链表;plan(s) producing source data */    List       *withCheckOptionLists;   /* 每一个目标表均具备的WCO链表;per-target-table WCO lists */    List       *returningLists; /* 每一个目标表均具备的RETURNING链表;per-target-table RETURNING tlists */    List       *fdwPrivLists;   /* 每一个目标表的FDW私有数据链表;per-target-table FDW private data lists */    Bitmapset  *fdwDirectModifyPlans;   /* FDW DM计划索引位图;indices of FDW DM plans */    List       *rowMarks;       /* rowMarks链表;PlanRowMarks (non-locking only) */    int         epqParam;       /* EvalPlanQual再解析使用的参数ID;ID of Param for EvalPlanQual re-eval */    OnConflictAction onConflictAction;  /* ON CONFLICT action */    List       *arbiterIndexes; /* 冲突仲裁器索引表;List of ON CONFLICT arbiter index OIDs  */    List       *onConflictSet;  /* SET for INSERT ON CONFLICT DO UPDATE */    Node       *onConflictWhere;    /* WHERE for ON CONFLICT UPDATE */    Index       exclRelRTI;     /* RTI of the EXCLUDED pseudo relation */    List       *exclRelTlist;   /* 已排除伪关系的投影列链表;tlist of the EXCLUDED pseudo relation */} ModifyTable;

ResultRelInfo
ResultRelInfo结构体
每当更新一个现有的关系时,我们必须更新关系上的索引,也许还需要触发触发器。ResultRelInfo保存关于结果关系所需的所有信息,包括索引。

/* * ResultRelInfo * ResultRelInfo结构体 * * Whenever we update an existing relation, we have to update indexes on the * relation, and perhaps also fire triggers.  ResultRelInfo holds all the * information needed about a result relation, including indexes. * 每当更新一个现有的关系时,我们必须更新关系上的索引,也许还需要触发触发器。 * ResultRelInfo保存关于结果关系所需的所有信息,包括索引。 *  * Normally, a ResultRelInfo refers to a table that is in the query's * range table; then ri_RangeTableIndex is the RT index and ri_RelationDesc * is just a copy of the relevant es_relations[] entry.  But sometimes, * in ResultRelInfos used only for triggers, ri_RangeTableIndex is zero * and ri_RelationDesc is a separately-opened relcache pointer that needs * to be separately closed.  See ExecGetTriggerResultRel. * 通常,ResultRelInfo是指查询范围表中的表; * ri_RangeTableIndex是RT索引,而ri_RelationDesc只是相关es_relations[]条目的副本。 * 但有时,在只用于触发器的ResultRelInfos中,ri_RangeTableIndex为零(NULL), *   而ri_RelationDesc是一个需要单独关闭单独打开的relcache指针。 *   具体可参考ExecGetTriggerResultRel结构体。 */typedef struct ResultRelInfo{    NodeTag     type;    /* result relation's range table index, or 0 if not in range table */    //RTE索引    Index       ri_RangeTableIndex;    /* relation descriptor for result relation */    //结果/目标relation的描述符    Relation    ri_RelationDesc;    /* # of indices existing on result relation */    //目标关系中索引数目    int         ri_NumIndices;    /* array of relation descriptors for indices */    //索引的关系描述符数组(索引视为一个relation)    RelationPtr ri_IndexRelationDescs;    /* array of key/attr info for indices */    //索引的键/属性数组    IndexInfo **ri_IndexRelationInfo;    /* triggers to be fired, if any */    //触发的索引    TriggerDesc *ri_TrigDesc;    /* cached lookup info for trigger functions */    //触发器函数(缓存)    FmgrInfo   *ri_TrigFunctions;    /* array of trigger WHEN expr states */    //WHEN表达式状态的触发器数组    ExprState **ri_TrigWhenExprs;    /* optional runtime measurements for triggers */    //可选的触发器运行期度量器    Instrumentation *ri_TrigInstrument;    /* FDW callback functions, if foreign table */    //FDW回调函数    struct FdwRoutine *ri_FdwRoutine;    /* available to save private state of FDW */    //可用于存储FDW的私有状态    void       *ri_FdwState;    /* true when modifying foreign table directly */    //直接更新FDW时为T    bool        ri_usesFdwDirectModify;    /* list of WithCheckOption's to be checked */    //WithCheckOption链表    List       *ri_WithCheckOptions;    /* list of WithCheckOption expr states */    //WithCheckOption表达式链表    List       *ri_WithCheckOptionExprs;    /* array of constraint-checking expr states */    //约束检查表达式状态数组    ExprState **ri_ConstraintExprs;    /* for removing junk attributes from tuples */    //用于从元组中删除junk属性    JunkFilter *ri_junkFilter;    /* list of RETURNING expressions */    //RETURNING表达式链表    List       *ri_returningList;    /* for computing a RETURNING list */    //用于计算RETURNING链表    ProjectionInfo *ri_projectReturning;    /* list of arbiter indexes to use to check conflicts */    //用于检查冲突的仲裁器索引的列表    List       *ri_onConflictArbiterIndexes;    /* ON CONFLICT evaluation state */    //ON CONFLICT解析状态    OnConflictSetState *ri_onConflict;    /* partition check expression */    //分区检查表达式链表    List       *ri_PartitionCheck;    /* partition check expression state */    //分区检查表达式状态    ExprState  *ri_PartitionCheckExpr;    /* relation descriptor for root partitioned table */    //分区root根表描述符    Relation    ri_PartitionRoot;    /* Additional information specific to partition tuple routing */    //额外的分区元组路由信息    struct PartitionRoutingInfo *ri_PartitionInfo;} ResultRelInfo;

PartitionRoutingInfo
PartitionRoutingInfo结构体
分区路由信息,用于将元组路由到表分区的结果关系信息。

/* * PartitionRoutingInfo * PartitionRoutingInfo - 分区路由信息 *  * Additional result relation information specific to routing tuples to a * table partition. * 用于将元组路由到表分区的结果关系信息。 */typedef struct PartitionRoutingInfo{    /*     * Map for converting tuples in root partitioned table format into     * partition format, or NULL if no conversion is required.     * 映射,用于将根分区表格式的元组转换为分区格式,如果不需要转换,则转换为NULL。     */    TupleConversionMap *pi_RootToPartitionMap;    /*     * Map for converting tuples in partition format into the root partitioned     * table format, or NULL if no conversion is required.     * 映射,用于将分区格式的元组转换为根分区表格式,如果不需要转换,则转换为NULL。     */    TupleConversionMap *pi_PartitionToRootMap;    /*     * Slot to store tuples in partition format, or NULL when no translation     * is required between root and partition.     * 以分区格式存储元组的slot.在根分区和分区之间不需要转换时为NULL。     */    TupleTableSlot *pi_PartitionTupleSlot;} PartitionRoutingInfo;

TupleConversionMap
TupleConversionMap结构体,用于存储元组转换映射信息.

typedef struct TupleConversionMap{    TupleDesc   indesc;         /* 源行类型的描述符;tupdesc for source rowtype */    TupleDesc   outdesc;        /* 结果行类型的描述符;tupdesc for result rowtype */    AttrNumber *attrMap;        /* 输入字段的索引信息,0表示NULL;indexes of input fields, or 0 for null */    Datum      *invalues;       /* 析构源数据的工作空间;workspace for deconstructing source */    bool       *inisnull;       //是否为NULL标记数组    Datum      *outvalues;      /* 构造结果的工作空间;workspace for constructing result */    bool       *outisnull;      //null标记} TupleConversionMap;

二、源码解读

ExecPrepareTupleRouting函数确定要插入slot中的tuple所属的分区,同时修改mtstate和estate等相关信息,为后续实际的插入作准备。

/* * ExecPrepareTupleRouting --- prepare for routing one tuple * ExecPrepareTupleRouting --- 为路由一个元组做准备 *  * Determine the partition in which the tuple in slot is to be inserted, * and modify mtstate and estate to prepare for it. * 确定要插入slot中tuple的分区,并修改mtstate和estate以为插入作准备。 * * Caller must revert the estate changes after executing the insertion! * In mtstate, transition capture changes may also need to be reverted. * 调用方必须在执行插入之后恢复estate中被修改的属性值! * 在mtstate中,转换捕获更改也可能需要恢复。 * * Returns a slot holding the tuple of the partition rowtype. * 返回包含分区rowtype元组的槽位。 */static TupleTableSlot *ExecPrepareTupleRouting(ModifyTableState *mtstate,                        EState *estate,                        PartitionTupleRouting *proute,                        ResultRelInfo *targetRelInfo,                        TupleTableSlot *slot){    ModifyTable *node;//ModifyTable节点    int         partidx;//分区索引    ResultRelInfo *partrel;//ResultRelInfo结构体指针(数组)    HeapTuple   tuple;//元组    /*     * Determine the target partition.  If ExecFindPartition does not find a     * partition after all, it doesn't return here; otherwise, the returned     * value is to be used as an index into the arrays for the ResultRelInfo     * and TupleConversionMap for the partition.     * 确定目标分区。     * 如果ExecFindPartition最终没有找到分区,它不会在这里返回;     * 否则,返回值将用作分区的ResultRelInfo和TupleConversionMap数组的索引。     */    partidx = ExecFindPartition(targetRelInfo,                                proute->partition_dispatch_info,                                slot,                                estate);    Assert(partidx >= 0 && partidx < proute->num_partitions);    /*     * Get the ResultRelInfo corresponding to the selected partition; if not     * yet there, initialize it.     * 获取与所选分区对应的ResultRelInfo;如果还没有,则初始化。     */    partrel = proute->partitions[partidx];    if (partrel == NULL)        partrel = ExecInitPartitionInfo(mtstate, targetRelInfo,                                        proute, estate,                                        partidx);    /*     * Check whether the partition is routable if we didn't yet     * 检查分区是否可路由     *      * Note: an UPDATE of a partition key invokes an INSERT that moves the     * tuple to a new partition.  This check would be applied to a subplan     * partition of such an UPDATE that is chosen as the partition to route     * the tuple to.  The reason we do this check here rather than in     * ExecSetupPartitionTupleRouting is to avoid aborting such an UPDATE     * unnecessarily due to non-routable subplan partitions that may not be     * chosen for update tuple movement after all.     * 注意:分区键的更新调用将元组移动到新分区的插入。     * 此检查将应用于此类更新的子计划分区,该分区被选择为将元组路由到的分区。     * 在这里而不是在ExecSetupPartitionTupleRouting中执行此检查的原因是         为了避免由于无法路由的子计划分区而不必要地中止这样的更新,这些分区可能最终不会被选择用于更新元组移动。     */    if (!partrel->ri_PartitionReadyForRouting)    {        /* Verify the partition is a valid target for INSERT. */        //验证分区是否可用于INSERT        CheckValidResultRel(partrel, CMD_INSERT);        /* Set up information needed for routing tuples to the partition. */        //设置将元组路由到分区所需的信息。        ExecInitRoutingInfo(mtstate, estate, proute, partrel, partidx);    }    /*     * Make it look like we are inserting into the partition.     * 让它看起来像是插入到分区中。     */    estate->es_result_relation_info = partrel;    /* Get the heap tuple out of the given slot. */    //从给定的slot中获取heap tuple    tuple = ExecMaterializeSlot(slot);    /*     * If we're capturing transition tuples, we might need to convert from the     * partition rowtype to parent rowtype.     * 如果正在捕获转换元组,可能需要将分区行类型转换为根分区表的行类型。     */    if (mtstate->mt_transition_capture != NULL)    {        if (partrel->ri_TrigDesc &&            partrel->ri_TrigDesc->trig_insert_before_row)        {            /*             * If there are any BEFORE triggers on the partition, we'll have             * to be ready to convert their result back to tuplestore format.             * 如果分区上有BEFORE触发器,必须准备将它们的结果转换回tuplestore格式。             */            mtstate->mt_transition_capture->tcs_original_insert_tuple = NULL;            mtstate->mt_transition_capture->tcs_map =                TupConvMapForLeaf(proute, targetRelInfo, partidx);        }        else        {            /*             * Otherwise, just remember the original unconverted tuple, to             * avoid a needless round trip conversion.             * 否则,只需记住原始的未转换元组,以避免不必要的来回转换。             */            mtstate->mt_transition_capture->tcs_original_insert_tuple = tuple;            mtstate->mt_transition_capture->tcs_map = NULL;        }    }    if (mtstate->mt_oc_transition_capture != NULL)    {        mtstate->mt_oc_transition_capture->tcs_map =            TupConvMapForLeaf(proute, targetRelInfo, partidx);    }    /*     * Convert the tuple, if necessary.     * 如需要,转换元组     */    ConvertPartitionTupleSlot(proute->parent_child_tupconv_maps[partidx],                              tuple,                              proute->partition_tuple_slot,                              &slot);    /* Initialize information needed to handle ON CONFLICT DO UPDATE. */    //如为ON CONFLICT DO UPDATE模式,则初始化相关信息    Assert(mtstate != NULL);    node = (ModifyTable *) mtstate->ps.plan;    if (node->onConflictAction == ONCONFLICT_UPDATE)    {        Assert(mtstate->mt_existing != NULL);        ExecSetSlotDescriptor(mtstate->mt_existing,                              RelationGetDescr(partrel->ri_RelationDesc));        Assert(mtstate->mt_conflproj != NULL);        ExecSetSlotDescriptor(mtstate->mt_conflproj,                              partrel->ri_onConflict->oc_ProjTupdesc);    }    return slot;}/* * ExecFetchSlotHeapTuple - fetch HeapTuple representing the slot's content * ExecFetchSlotHeapTuple - 根据slot提取HeapTuple * * The returned HeapTuple represents the slot's content as closely as * possible. * 返回的HeapTuple尽可能就是slot的内容。 *  * If materialize is true, the contents of the slots will be made independent * from the underlying storage (i.e. all buffer pins are release, memory is * allocated in the slot's context). * 如果materialize为T,slot的内容将独立于底层存储(即释放所有缓冲区pin,在slot的上下文中分配内存)。 * * If shouldFree is not-NULL it'll be set to true if the returned tuple has * been allocated in the calling memory context, and must be freed by the * caller (via explicit pfree() or a memory context reset). * 如果shouldFree not-NULL,那么如果返回的元组已经在调用内存上下文中分配, *   并且必须由调用方释放(通过显式pfree()或内存上下文重置)。 * * NB: If materialize is true, modifications of the returned tuple are * allowed. But it depends on the type of the slot whether such modifications * will also affect the slot's contents. While that is not the nicest * behaviour, all such modifcations are in the process of being removed. * 注意:如果materialize为T,则允许修改返回的元组。 * 但这取决于slot的类型,这种修改是否也会影响slot的内容。 * 虽然这不是最好的行为,但所有这些修改都在被移除的过程中。 */HeapTupleExecFetchSlotHeapTuple(TupleTableSlot *slot, bool materialize, bool *shouldFree){    /*     * sanity checks     * 安全检查     */    Assert(slot != NULL);    Assert(!TTS_EMPTY(slot));    /* Materialize the tuple so that the slot "owns" it, if requested. */    //物化元组,以便slot"拥有"它(如要求)。    if (materialize)        slot->tts_ops->materialize(slot);    if (slot->tts_ops->get_heap_tuple == NULL)    {        if (shouldFree)            *shouldFree = true;        return slot->tts_ops->copy_heap_tuple(slot);//返回slot拷贝    }    else    {        if (shouldFree)            *shouldFree = false;        return slot->tts_ops->get_heap_tuple(slot);//直接返回slot    }}

三、跟踪分析

测试脚本如下

-- Hash Partitiondrop table if exists t_hash_partition;create table t_hash_partition (c1 int not null,c2  varchar(40),c3 varchar(40)) partition by hash(c1);create table t_hash_partition_1 partition of t_hash_partition for values with (modulus 6,remainder 0);create table t_hash_partition_2 partition of t_hash_partition for values with (modulus 6,remainder 1);create table t_hash_partition_3 partition of t_hash_partition for values with (modulus 6,remainder 2);create table t_hash_partition_4 partition of t_hash_partition for values with (modulus 6,remainder 3);create table t_hash_partition_5 partition of t_hash_partition for values with (modulus 6,remainder 4);create table t_hash_partition_6 partition of t_hash_partition for values with (modulus 6,remainder 5);-- delete from t_hash_partition where c1 = 0;insert into t_hash_partition(c1,c2,c3) VALUES(0,'HASH0','HAHS0');

启动gdb,设置断点,进入ExecPrepareTupleRouting

(gdb) b ExecPrepareTupleRoutingBreakpoint 1 at 0x710b1e: file nodeModifyTable.c, line 1712.(gdb) cContinuing.Breakpoint 1, ExecPrepareTupleRouting (mtstate=0x1e4de60, estate=0x1e4daf8, proute=0x1e4eb48, targetRelInfo=0x1e4dd48,     slot=0x1e4e4e0) at nodeModifyTable.c:17121712        partidx = ExecFindPartition(targetRelInfo,

查看函数调用栈
ExecPrepareTupleRouting在ExecModifyTable Node中被调用,为后续的插入作准备.

(gdb) bt#0  ExecPrepareTupleRouting (mtstate=0x1e4de60, estate=0x1e4daf8, proute=0x1e4eb48, targetRelInfo=0x1e4dd48, slot=0x1e4e4e0)    at nodeModifyTable.c:1712#1  0x0000000000711602 in ExecModifyTable (pstate=0x1e4de60) at nodeModifyTable.c:2157#2  0x00000000006e4c30 in ExecProcNodeFirst (node=0x1e4de60) at execProcnode.c:445#3  0x00000000006d9974 in ExecProcNode (node=0x1e4de60) at ../../../src/include/executor/executor.h:237#4  0x00000000006dc22d in ExecutePlan (estate=0x1e4daf8, planstate=0x1e4de60, use_parallel_mode=false,     operation=CMD_INSERT, sendTuples=false, numberTuples=0, direction=ForwardScanDirection, dest=0x1e67e90,     execute_once=true) at execMain.c:1723#5  0x00000000006d9f5c in standard_ExecutorRun (queryDesc=0x1e39d68, direction=ForwardScanDirection, count=0,     execute_once=true) at execMain.c:364#6  0x00000000006d9d7f in ExecutorRun (queryDesc=0x1e39d68, direction=ForwardScanDirection, count=0, execute_once=true)    at execMain.c:307#7  0x00000000008cbdb3 in ProcessQuery (plan=0x1e67d18,     sourceText=0x1d60ec8 "insert into t_hash_partition(c1,c2,c3) VALUES(0,'HASH0','HAHS0');", params=0x0, queryEnv=0x0,     dest=0x1e67e90, completionTag=0x7ffdcf148b20 "") at pquery.c:161#8  0x00000000008cd6f9 in PortalRunMulti (portal=0x1dc6538, isTopLevel=true, setHoldSnapshot=false, dest=0x1e67e90,     altdest=0x1e67e90, completionTag=0x7ffdcf148b20 "") at pquery.c:1286#9  0x00000000008cccb9 in PortalRun (portal=0x1dc6538, count=9223372036854775807, isTopLevel=true, run_once=true,     dest=0x1e67e90, altdest=0x1e67e90, completionTag=0x7ffdcf148b20 "") at pquery.c:799#10 0x00000000008c6b1e in exec_simple_query (    query_string=0x1d60ec8 "insert into t_hash_partition(c1,c2,c3) VALUES(0,'HASH0','HAHS0');") at postgres.c:1145#11 0x00000000008cae70 in PostgresMain (argc=1, argv=0x1d8aba8, dbname=0x1d8aa10 "testdb", username=0x1d5dba8 "xdb")    at postgres.c:4182

找到该元组所在的分区

(gdb) n1716        Assert(partidx >= 0 && partidx < proute->num_partitions);(gdb) p partidx$1 = 2

获取与所选分区对应的ResultRelInfo;如果还没有,则初始化

(gdb) n1722        partrel = proute->partitions[partidx];(gdb) 1723        if (partrel == NULL)(gdb) p *partrelCannot access memory at address 0x0(gdb) n1724            partrel = ExecInitPartitionInfo(mtstate, targetRelInfo,

初始化后的partrel

(gdb) p *partrel$2 = {type = T_ResultRelInfo, ri_RangeTableIndex = 1, ri_RelationDesc = 0x1e7c940, ri_NumIndices = 0,   ri_IndexRelationDescs = 0x0, ri_IndexRelationInfo = 0x0, ri_TrigDesc = 0x0, ri_TrigFunctions = 0x0,   ri_TrigWhenExprs = 0x0, ri_TrigInstrument = 0x0, ri_FdwRoutine = 0x0, ri_FdwState = 0x0, ri_usesFdwDirectModify = false,   ri_WithCheckOptions = 0x0, ri_WithCheckOptionExprs = 0x0, ri_ConstraintExprs = 0x0, ri_junkFilter = 0x0,   ri_returningList = 0x0, ri_projectReturning = 0x0, ri_onConflictArbiterIndexes = 0x0, ri_onConflict = 0x0,   ri_PartitionCheck = 0x1e4f538, ri_PartitionCheckExpr = 0x0, ri_PartitionRoot = 0x1e7c2f8,   ri_PartitionReadyForRouting = true}

目标分区描述符-->t_hash_partition_3

(gdb) p *partrel->ri_RelationDesc$3 = {rd_node = {spcNode = 1663, dbNode = 16402, relNode = 16995}, rd_smgr = 0x1e34510, rd_refcnt = 1, rd_backend = -1,   rd_islocaltemp = false, rd_isnailed = false, rd_isvalid = true, rd_indexvalid = 0 '\000', rd_statvalid = false,   rd_createSubid = 0, rd_newRelfilenodeSubid = 0, rd_rel = 0x1e7c1e0, rd_att = 0x1e7cb58, rd_id = 16995, rd_lockInfo = {    lockRelId = {relId = 16995, dbId = 16402}}, rd_rules = 0x0, rd_rulescxt = 0x0, trigdesc = 0x0, rd_rsdesc = 0x0,   rd_fkeylist = 0x0, rd_fkeyvalid = false, rd_partkeycxt = 0x0, rd_partkey = 0x0, rd_pdcxt = 0x0, rd_partdesc = 0x0,   rd_partcheck = 0x1e7aa30, rd_indexlist = 0x0, rd_oidindex = 0, rd_pkindex = 0, rd_replidindex = 0, rd_statlist = 0x0,   rd_indexattr = 0x0, rd_projindexattr = 0x0, rd_keyattr = 0x0, rd_pkattr = 0x0, rd_idattr = 0x0, rd_projidx = 0x0,   rd_pubactions = 0x0, rd_options = 0x0, rd_index = 0x0, rd_indextuple = 0x0, rd_amhandler = 0, rd_indexcxt = 0x0,   rd_amroutine = 0x0, rd_opfamily = 0x0, rd_opcintype = 0x0, rd_support = 0x0, rd_supportinfo = 0x0, rd_indoption = 0x0,   rd_indexprs = 0x0, rd_indpred = 0x0, rd_exclops = 0x0, rd_exclprocs = 0x0, rd_exclstrats = 0x0, rd_amcache = 0x0,   rd_indcollation = 0x0, rd_fdwroutine = 0x0, rd_toastoid = 0, pgstat_info = 0x1de40b0}------------------testdb=# select oid,relname from pg_class where oid=16995;  oid  |      relname       -------+-------------------- 16995 | t_hash_partition_3(1 row)  -----------------

该分区是可路由的

(gdb) p partrel->ri_PartitionReadyForRouting$4 = true

设置estate变量(让它看起来像是插入到分区中)/物化tuple

(gdb) n1751        estate->es_result_relation_info = partrel;(gdb) 1754        tuple = ExecMaterializeSlot(slot);(gdb) 1760        if (mtstate->mt_transition_capture != NULL)(gdb) p tuple$5 = (HeapTuple) 0x1e4f4e0(gdb) p *tuple$6 = {t_len = 40, t_self = {ip_blkid = {bi_hi = 65535, bi_lo = 65535}, ip_posid = 0}, t_tableOid = 0, t_data = 0x1e4f4f8}(gdb) (gdb) p *tuple->t_data$7 = {t_choice = {t_heap = {t_xmin = 160, t_xmax = 4294967295, t_field3 = {t_cid = 2249, t_xvac = 2249}}, t_datum = {      datum_len_ = 160, datum_typmod = -1, datum_typeid = 2249}}, t_ctid = {ip_blkid = {bi_hi = 65535, bi_lo = 65535},     ip_posid = 0}, t_infomask2 = 3, t_infomask = 2, t_hoff = 24 '\030', t_bits = 0x1e4f50f ""}

mtstate->mt_transition_capture 为NULL,无需处理相关信息

(gdb) p mtstate->mt_transition_capture $8 = (struct TransitionCaptureState *) 0x01783        if (mtstate->mt_oc_transition_capture != NULL)(gdb)

如需要,转换元组

1792        ConvertPartitionTupleSlot(proute->parent_child_tupconv_maps[partidx],(gdb) 1798        Assert(mtstate != NULL);(gdb) 1799        node = (ModifyTable *) mtstate->ps.plan;(gdb) p *mtstate$9 = {ps = {type = T_ModifyTableState, plan = 0x1e59838, state = 0x1e4daf8, ExecProcNode = 0x711056 ,     ExecProcNodeReal = 0x711056 , instrument = 0x0, worker_instrument = 0x0, worker_jit_instrument = 0x0,     qual = 0x0, lefttree = 0x0, righttree = 0x0, initPlan = 0x0, subPlan = 0x0, chgParam = 0x0,     ps_ResultTupleSlot = 0x1e4ede8, ps_ExprContext = 0x0, ps_ProjInfo = 0x0, scandesc = 0x0}, operation = CMD_INSERT,   canSetTag = true, mt_done = false, mt_plans = 0x1e4e078, mt_nplans = 1, mt_whichplan = 0, resultRelInfo = 0x1e4dd48,   rootResultRelInfo = 0x0, mt_arowmarks = 0x1e4e098, mt_epqstate = {estate = 0x0, planstate = 0x0, origslot = 0x1e4e4e0,     plan = 0x1e59588, arowMarks = 0x0, epqParam = 0}, fireBSTriggers = false, mt_existing = 0x0, mt_excludedtlist = 0x0,   mt_conflproj = 0x0, mt_partition_tuple_routing = 0x1e4eb48, mt_transition_capture = 0x0, mt_oc_transition_capture = 0x0,   mt_per_subplan_tupconv_maps = 0x0}

返回slot,完成调用

(gdb) n1800        if (node->onConflictAction == ONCONFLICT_UPDATE)(gdb) 1810        return slot;(gdb) 1811    }

到此,相信大家对"怎么理解PostgreSQL的分区表"有了更深的了解,不妨来实际操作一番吧!这里是网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!

0