python如何实现dbscan算法
发表于:2025-01-19 作者:千家信息网编辑
千家信息网最后更新 2025年01月19日,这篇"python如何实现dbscan算法"文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这
千家信息网最后更新 2025年01月19日python如何实现dbscan算法
这篇"python如何实现dbscan算法"文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇"python如何实现dbscan算法"文章吧。
DBSCAN 算法是一种基于密度的空间聚类算法。该算法利用基于密度的聚类的概念,即要求聚类空间中的一定区域内所包含对象(点或其它空间对象)的数目不小于某一给定阀值。DBSCAN 算法的显著优点是聚类速度快且能够有效处理噪声点和发现任意形状的空间聚类。但是由于它直接对整个数据库进行操作且进行聚类时使用了一个全局性的表征密度的参数,因此也具有两个比较明显的弱点:
1. 当数据量增大时,要求较大的内存支持 I/0 消耗也很大;
2. 当空间聚类的密度不均匀、聚类间距离相差很大时,聚类质量较差。
DBSCAN算法的聚类过程
DBSCAN算法基于一个事实:一个聚类可以由其中的任何核心对象唯一确定。等价可以表述为: 任一满足核心对象条件的数据对象p,数据库D中所有从p密度可达的数据对象所组成的集合构成了一个完整的聚类C,且p属于C。
大致流程
先根据给定的半径 r 确定中心点,也就是这类点在半径r内包含的点数量 n 大于我们的要求(n>=minPionts)
然后遍历所有的中心点,将互相可通达的中心点与其包括的点分为一组
全部分完组之后,没有被纳入任何一组的点就是离群点啦!
导入相关依赖
import numpy as npimport matplotlib.pyplot as pltfrom sklearn import datasets
求点跟点之间距离(欧氏距离)
def cuircl(pointA,pointB): distance = np.sqrt(np.sum(np.power(pointA - pointB,2))) return distance
求临时簇,即确定所有的中心点,非中心点
def firstCluster(dataSets,r,include): cluster = [] m = np.shape(dataSets)[0] ungrouped = np.array([i for i in range (m)]) for i in range (m): tempCluster = [] #第一位存储中心点簇 tempCluster.append(i) for j in range (m): if (cuircl(dataSets[i,:],dataSets[j,:]) < r and i != j ): tempCluster.append(j) tempCluster = np.mat(np.array(tempCluster)) if (np.size(tempCluster)) >= include: cluster.append(np.array(tempCluster).flatten()) #返回的是List center=[] n = np.shape(cluster)[0] for k in range (n): center.append(cluster[k][0]) #其他的就是非中心点啦 ungrouped = np.delete(ungrouped,center) #ungrouped为非中心点 return cluster,center,ungrouped
将所有中心点遍历并进行聚集
def clusterGrouped(tempcluster,centers): m = np.shape(tempcluster)[0] group = [] #对应点是否遍历过 position = np.ones(m) unvisited = [] #未遍历点 unvisited.extend(centers) #所有点均遍历完毕 for i in range (len(position)): coreNeihbor = [] result = [] #删除第一个 #刨去自己的邻居结点,这一段就类似于深度遍历 if position[i]: #将邻结点填入 coreNeihbor.extend(list(tempcluster[i][:])) position[i] = 0 temp = coreNeihbor #按照深度遍历遍历完所有可达点 #遍历完所有的邻居结点 while len(coreNeihbor) > 0 : #选择当前点 present = coreNeihbor[0] for j in range(len(position)): #如果没有访问过 if position[j] == 1: same = [] #求所有的可达点 if (present in tempcluster[j]): cluster = tempcluster[j].tolist() diff = [] for x in cluster: if x not in temp: #确保没有重复点 diff.append(x) temp.extend(diff) position[j] = 0 # 删掉当前点 del coreNeihbor[0] result.extend(temp) group.append(list(set(result))) i +=1 return group
核心算法完毕!
生成同心圆类型的随机数据进行测试
#生成非凸数据 factor表示内外圈距离比X,Y1 = datasets.make_circles(n_samples = 1500, factor = .4, noise = .07)#参数选择,0.1为圆半径,6为判定中心点所要求的点个数,生成分类结果tempcluster,center,ungrouped = firstCluster(X,0.1,6)group = clusterGrouped(tempcluster,center)#以下是分类后对数据进行进一步处理num = len(group)voice = list(ungrouped)Y = []for i in range (num): Y.append(X[group[i]])flat = []for i in range(num): flat.extend(group[i])diff = [x for x in voice if x not in flat]Y.append(X[diff])Y = np.mat(np.array(Y))
绘图~
color = ['red','blue','green','black','pink','orange']for i in range(num): plt.scatter(Y[0,i][:,0],Y[0,i][:,1],c=color[i])plt.scatter(Y[0,-1][:,0],Y[0,-1][:,1],c = 'purple')plt.show()
以上就是关于"python如何实现dbscan算法"这篇文章的内容,相信大家都有了一定的了解,希望小编分享的内容对大家有帮助,若想了解更多相关的知识内容,请关注行业资讯频道。
算法
中心点
数据
对象
内容
密度
空间
半径
就是
核心
结点
生成
很大
前点
参数
数据库
文章
深度
知识
篇文章
数据库的安全要保护哪些东西
数据库安全各自的含义是什么
生产安全数据库录入
数据库的安全性及管理
数据库安全策略包含哪些
海淀数据库安全审计系统
建立农村房屋安全信息数据库
易用的数据库客户端支持安全管理
连接数据库失败ssl安全错误
数据库的锁怎样保障安全
互联网数据库参考文献格式
我的世界诸神之战混乱的服务器
网络技术包括编程吗
asp中cs用访问数据库
家园卫士部落服务器
网络技术应用 高中
北京市天下网络技术有限公司
后关系型数据库
软件开发中经典阶段包括哪些
广讯通网络技术
网络安全软件 大势
数据库中标量函数又返回值的
网络安全数据采集方法
软件开发属于cs还是bs
服务器两个网口的用处
网络安全事件管理台账
软件开发工程师和售前工程师
万胜网络安全教育
快速架设服务器
小学生防沉迷网络安全教育
三级数据库技术题库有多少套题
网络安全论文模板素材
笔记本代理服务器自动打开
苏州多美初会网络技术有限公司
百里网络技术有限公司
乡镇网络安全风险防控体系
软件开发总体计划百度文库
校时服务器那个好
网络安全工具125
华为h22h03服务器