Unity贝塞尔曲线的实现方法
发表于:2025-01-19 作者:千家信息网编辑
千家信息网最后更新 2025年01月19日,本篇内容介绍了"Unity贝塞尔曲线的实现方法"的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!一阶贝塞
千家信息网最后更新 2025年01月19日Unity贝塞尔曲线的实现方法
本篇内容介绍了"Unity贝塞尔曲线的实现方法"的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!
一阶贝塞尔曲线
一阶贝塞尔曲线就是一条线,我们很容易根据 t 求出 t 点的位置。
P(t)=P0+(P1-P0)*t =(1-t)*P0+tP1 ; t[ 0,1] ,且其等同于线性插值。
二阶贝塞尔曲线
取平面内三个不共线的点,AB:AC=CD:CE,这个时候BD又是一条直线,可以按照一阶的贝塞尔方程来进行线性插值了。
P(B)=(1-t)*P0+tP1 ;
P(D)=(1-t)P1+tP2 ;
P(t)=(1-t)*P(B)+tP(D)
=(1-t)*((1-t)*P0+tP1)+t((1-t)P1+tP2 )
=(1-t)² *P0+2t*(1-t)*P1+t²*P2 ;t[0,1];
代码:
public LineRenderer line_b;public LineRenderer line_a;public LineRenderer line_c; public Transform start;public Transform end;public Transform c; void Start() { } void Update() { line_a.SetPosition(0, start.position); line_a.SetPosition(1, c.position); line_c.SetPosition(0, end.position); line_c.SetPosition(1, c.position); // float distance = Vector3.Distance(start.position, end.position); Vector3 controlPoint = c.position; //start.position + (start.position+ c.position).normalized * distance / 1.6f; Vector3[] bcList = GetBeizerPathPointList(start.position, controlPoint, end.position, 50); line_b.positionCount = bcList.Length + 1; line_b.SetPosition(0, start.position); for (int i = 0; i < bcList.Length; i++) { Vector3 v = bcList[i]; line_b.SetPosition(i + 1, v); } } public static Vector3[] GetBeizerPathPointList(Vector3 startPoint, Vector3 controlPoint, Vector3 endPoint, int pointNum) { Vector3[] BeizerPathPointList = new Vector3[pointNum]; for (int i = 1; i <= pointNum; i++) { float t = i / (float)pointNum; Vector3 point = GetBeizerPathPoint(t, startPoint, controlPoint, endPoint); BeizerPathPointList[i - 1] = point; } return BeizerPathPointList; } //贝塞尔曲线二次方公式 private static Vector3 GetBeizerPathPoint(float t, Vector3 p0, Vector3 p1, Vector3 p2) { return (1 - t) * (1 - t) * p0 + 2 * t * (1 - t) * p1 + t * t * p2; }
三阶贝塞尔曲线
三阶贝塞尔曲线和二阶其实是同一个道理,都可以按照一阶的贝塞尔方程来进行线性插值。这里就直接上公式了。
P(t)=P0*(1-t)³ +3P1*t*(1-t)²+3P2*t²*(1-t)+P3*t³ ; t[0,1];
代码
public Transform start;public Transform end;public Transform c0;public Transform c1; public LineRenderer line_b; public LineRenderer line_a; public LineRenderer line_c; public LineRenderer line_d; void Start() { } // Update is called once per frame void Update() { line_a.SetPosition(0, start.position); line_a.SetPosition(1, c0.position); line_c.SetPosition(0, c1.position); line_c.SetPosition(1, c0.position); line_d.SetPosition(0, c1.position); line_d.SetPosition(1, end.position); Vector3[] bcList = GetBeizerPathPointList(start.position, c0.position,c1.position, end.position, 50); line_b.positionCount = bcList.Length + 1; line_b.SetPosition(0, start.position); for (int i = 0; i < bcList.Length; i++) { Vector3 v = bcList[i]; line_b.SetPosition(i + 1, v); } } public static Vector3[] GetBeizerPathPointList(Vector3 startPoint, Vector3 controlPoint0, Vector3 controlPoint1, Vector3 endPoint, int pointNum) { Vector3[] BeizerPathPointList = new Vector3[pointNum]; for (int i = 1; i <= pointNum; i++) { float t = i / (float)pointNum; Vector3 point = GetBeizerPathPoint(t, startPoint, controlPoint0, controlPoint1, endPoint); BeizerPathPointList[i - 1] = point; } return BeizerPathPointList; } //贝塞尔曲线三次方公式 private static Vector3 GetBeizerPathPoint(float t, Vector3 p0, Vector3 p1, Vector3 p2,Vector3 p3) { return (1 - t) * (1 - t) * (1 - t) * p0 + 3 * p1 * t * (1 - t) * (1 - t) + 3 * p2 * t * t * (1 - t) + p3 * t * t * t; }
"Unity贝塞尔曲线的实现方法"的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注网站,小编将为大家输出更多高质量的实用文章!
贝塞
贝塞尔
曲线
公式
线性
插值
方法
代码
内容
方程
更多
知识
二阶
实用
学有所成
接下来
三个
位置
又是
困境
数据库的安全要保护哪些东西
数据库安全各自的含义是什么
生产安全数据库录入
数据库的安全性及管理
数据库安全策略包含哪些
海淀数据库安全审计系统
建立农村房屋安全信息数据库
易用的数据库客户端支持安全管理
连接数据库失败ssl安全错误
数据库的锁怎样保障安全
通美网络技术阿斌
服务器隔离 安全
成都中兴网管与软件开发二部
电脑网络安全模式正常模式死机
国内专利数据库公司排名
程序流程图 数据库
关于数据库锁 以下
为什么不要学计算机网络技术
望远县政务软件开发花多少钱
网络安全知识泄密
地理位置交友软件开发
计算机网络技术与运用pdf
小额贷款数据库设计
酒店管理系统 数据库
软件开发.早搏
lol服务器经常连不上
国内外引文文献分别有哪些数据库
数据库字段显示怎么显示成月日年
倩女幽魂无法连接到游戏服务器
TCGA数据库处理测序数据
济宁联想服务器电话
高中生网络安全承诺书
济南软件开发公司哪个好
材料数据库建立说明
电脑网络安全模式怎么连接网络
数据库保护数据安全的方法
计算机与网络技术考研有用吗
下载云服务器配置
清除王者荣耀登录服务器
网络安全系统主要风险隐患