千家信息网

Sqoop的原理分析是什么

发表于:2025-01-24 作者:千家信息网编辑
千家信息网最后更新 2025年01月24日,这篇文章主要为大家分析了Sqoop的原理分析是什么的相关知识点,内容详细易懂,操作细节合理,具有一定参考价值。如果感兴趣的话,不妨跟着跟随小编一起来看看,下面跟着小编一起深入学习"Sqoop的原理分析
千家信息网最后更新 2025年01月24日Sqoop的原理分析是什么

这篇文章主要为大家分析了Sqoop的原理分析是什么的相关知识点,内容详细易懂,操作细节合理,具有一定参考价值。如果感兴趣的话,不妨跟着跟随小编一起来看看,下面跟着小编一起深入学习"Sqoop的原理分析是什么"的知识吧。

一简介

Sqoop是一个用来将Hadoop和关系型数据库中的数据相互转移的工具,可以将一个关系型数据库(例如 : MySQL ,Oracle ,Postgres等)中的数据导进到Hadoop的HDFS中,也可以将HDFS的数据导进到关系型数据库中。

二特点

Sqoop中一大亮点就是可以通过hadoop的mapreduce把数据从关系型数据库中导入数据到HDFS。

三 Sqoop 命令

Sqoop大约有13种命令,和几种通用的参数(都支持这13种命令),这里先列出这13种命令。

接 着列出Sqoop的各种通用参数,然后针对以上13个命令列出他们自己的参数。Sqoop通用参数又分Common arguments,Incremental import arguments,Output line formatting arguments,Input parsing arguments,Hive arguments,HBase arguments,Generic Hadoop command-line arguments,下面一一说明:

1.Common arguments

通用参数,主要是针对关系型数据库链接的一些参数

四 sqoop命令举例

1)列出mysql数据库中的所有数据库

sqoop list-databases -connect jdbc:mysql://localhost:3306/ -username root -password 123456

2)连接mysql并列出test数据库中的表

sqoop list-tables -connect jdbc:mysql://localhost:3306/test -username root -password 123456

命令中的test为mysql数据库中的test数据库名称 username password分别为mysql数据库的用户密码

3)将关系型数据的表结构复制到hive中,只是复制表的结构,表中的内容没有复制过去。

sqoop create-hive-table -connect jdbc:mysql://localhost:3306/test

-table sqoop_test -username root -password 123456 -hive-table

test

其中 -table sqoop_test为mysql中的数据库test中的表 -hive-table

test 为hive中新建的表名称

4)从关系数据库导入文件到hive中

sqoop import -connect jdbc:mysql://localhost:3306/zxtest -username

root -password 123456 -table sqoop_test -hive-import -hive-table

s_test -m 1

5)将hive中的表数据导入到mysql中,在进行导入之前,mysql中的表

hive_test必须已经提前创建好了。

sqoop export -connect jdbc:mysql://localhost:3306/zxtest -username

root -password root -table hive_test -export-dir

/user/hive/warehouse/new_test_partition/dt=2012-03-05

6)从数据库导出表的数据到HDFS上文件

./sqoop import -connect

jdbc:mysql://10.28.168.109:3306/compression -username=hadoop

-password=123456 -table HADOOP_USER_INFO -m 1 -target-dir

/user/test

7)从数据库增量导入表数据到hdfs中

./sqoop import -connect jdbc:mysql://10.28.168.109:3306/compression

-username=hadoop -password=123456 -table HADOOP_USER_INFO -m 1

-target-dir /user/test -check-column id -incremental append

-last-value 3

五 Sqoop原理(以import为例)

Sqoop在import时,需要制定split-by参数。Sqoop根据不同的split-by参数值来进行切 分,然后将切分出来的区域分配到不同map中。每个map中再处理数据库中获取的一行一行的值,写入到HDFS中。同时split-by根据不同的参数类 型有不同的切分方法,如比较简单的int型,Sqoop会取最大和最小split-by字段值,然后根据传入的num-mappers来确定划分几个区 域。 比如select max(split_by),min(split-by) from得到的max(split-by)和min(split-by)分别为1000和1,而num-mappers为2的话,则会分成两个区域 (1,500)和(501-100),同时也会分成2个sql给2个map去进行导入操作,分别为select XXX from table where split-by>=1 and split-by<500和select XXX from table where split-by>=501 and split-by<=1000。最后每个map各自获取各自SQL中的数据进行导入工作。

六mapreduce job所需要的各种参数在Sqoop中的实现

1) InputFormatClass

com.cloudera.sqoop.mapreduce.db.DataDrivenDBInputFormat

2) OutputFormatClass

1)TextFile

com.cloudera.sqoop.mapreduce.RawKeyTextOutputFormat

2)SequenceFile

org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat

3)AvroDataFile

com.cloudera.sqoop.mapreduce.AvroOutputFormat

3)Mapper

1)TextFile

com.cloudera.sqoop.mapreduce.TextImportMapper

2)SequenceFile

com.cloudera.sqoop.mapreduce.SequenceFileImportMapper

3)AvroDataFile

com.cloudera.sqoop.mapreduce.AvroImportMapper

4)taskNumbers

1)mapred.map.tasks(对应num-mappers参数)

2)job.setNumReduceTasks(0);

这里以命令行:import -connect jdbc:mysql://localhost/test -username root -password 123456 -query "select sqoop_1.id as foo_id, sqoop_2.id as bar_id from sqoop_1 ,sqoop_2 WHERE $CONDITIONS" -target-dir /user/sqoop/test -split-by sqoop_1.id -hadoop-home=/home/hdfs/hadoop-0.20.2-CDH3B3 -num-mappers 2

1)设置Input

DataDrivenImportJob.configureInputFormat(Job job, String tableName,String tableClassName, String splitByCol)

a)DBConfiguration.configureDB(Configuration conf, String driverClass, String dbUrl, String userName, String passwd, Integer fetchSize)

1).mapreduce.jdbc.driver.class com.mysql.jdbc.Driver

2).mapreduce.jdbc.url jdbc:mysql://localhost/test

3).mapreduce.jdbc.username root

4).mapreduce.jdbc.password 123456

5).mapreduce.jdbc.fetchsize -2147483648

b)DataDrivenDBInputFormat.setInput(Job job,Class inputClass, String inputQuery, String inputBoundingQuery)

1)job.setInputFormatClass(DBInputFormat.class);

2)mapred.jdbc.input.bounding.query SELECT MIN(sqoop_1.id), MAX(sqoop_2.id) FROM (select sqoop_1.id as foo_id, sqoop_2.id as bar_id from sqoop_1 ,sqoop_2 WHERE (1 = 1) ) AS t1

3)job.setInputFormatClass(com.cloudera.sqoop.mapreduce.db.DataDrivenDBInputFormat.class);

4)mapreduce.jdbc.input.orderby sqoop_1.id

c)mapreduce.jdbc.input.class QueryResult

d)sqoop.inline.lob.length.max 16777216

2)设置Output

ImportJobBase.configureOutputFormat(Job job, String tableName,String tableClassName)

a)job.setOutputFormatClass(getOutputFormatClass());

b)FileOutputFormat.setOutputCompressorClass(job, codecClass);

c)SequenceFileOutputFormat.setOutputCompressionType(job,CompressionType.BLOCK);

d)FileOutputFormat.setOutputPath(job, outputPath);

3)设置Map

DataDrivenImportJob.configureMapper(Job job, String tableName,String tableClassName)

a)job.setOutputKeyClass(Text.class);
b)job.setOutputValueClass(NullWritable.class);
c)job.setMapperClass(com.cloudera.sqoop.mapreduce.TextImportMapper);

4)设置task number

JobBase.configureNumTasks(Job job)

mapred.map.tasks 4

job.setNumReduceTasks(0);

七 大概流程

1.读取要导入数据的表结构,生成运行类,默认是QueryResult,打成jar包,然后提交给Hadoop

2.设置好job,主要也就是设置好以上第六章中的各个参数

3.这里就由Hadoop来执行MapReduce来执行Import命令了,

1)首先要对数据进行切分,也就是DataSplit

DataDrivenDBInputFormat.getSplits(JobContext job)

2)切分好范围后,写入范围,以便读取

DataDrivenDBInputFormat.write(DataOutput output) 这里是lowerBoundQuery and upperBoundQuery

3)读取以上2)写入的范围

DataDrivenDBInputFormat.readFields(DataInput input)

4)然后创建RecordReader从数据库中读取数据

DataDrivenDBInputFormat.createRecordReader(InputSplit split,TaskAttemptContext context)

5)创建Map

TextImportMapper.setup(Context context)

6)RecordReader一行一行从关系型数据库中读取数据,设置好Map的Key和Value,交给Map

DBRecordReader.nextKeyValue()

7)运行map

TextImportMapper.map(LongWritable key, SqoopRecord val, Context context)

最后生成的Key是行数据,由QueryResult生成,Value是NullWritable.get()

关于"Sqoop的原理分析是什么"就介绍到这了,更多相关内容可以搜索以前的文章,希望能够帮助大家答疑解惑,请多多支持网站!

0