千家信息网

hadoop调优参数及原理是什么

发表于:2025-02-03 作者:千家信息网编辑
千家信息网最后更新 2025年02月03日,hadoop调优参数及原理是什么,相信很多没有经验的人对此束手无策,为此本文总结了问题出现的原因和解决方法,通过这篇文章希望你能解决这个问题。问题导读:1.map会将已经产生的部分结果先写入到该buf
千家信息网最后更新 2025年02月03日hadoop调优参数及原理是什么

hadoop调优参数及原理是什么,相信很多没有经验的人对此束手无策,为此本文总结了问题出现的原因和解决方法,通过这篇文章希望你能解决这个问题。

问题导读:
1.map会将已经产生的部分结果先写入到该buffer中.buffer大小可以通过那个参数来设置?
2.如何降低map的split的次数?
3.map中的数据什么情况下会写入磁盘?spill是什么?
4.map其实是当buffer被写满到一定程度(比如80%)时,就开始进行spill有由那个参数来决定?
5.通过哪个参数可以控制map中间结果是否使用压缩的?
6.reduce包含几个阶段,是每个reduce都必须包含?
7.Reduce task在做shuffle的过程是什么样子的?如何调整多个并行map个数的下载?
8.reduce的数据是否全部来源磁盘,如何调整使用内存?

1 Map side tuning参数1.1 MapTask运行内部原理

1.当map task开始运算,并产生中间数据时,其产生的中间结果并非直接就简单的写入磁盘。这中间的过程比较复杂,并且利用到了内存buffer来进行已经产生的部分结果的缓存,并在内存buffer中进行一些预排序来优化整个map的性能。如上图所示,每一个map都会对应存在一个内存buffer(MapOutputBuffer,即上图的buffer in memory),map会将已经产生的部分结果先写入到该buffer中,这个buffer默认是100MB大小,但是这个大小是可以根据job提交时的参数设定来调整的,

该参数即为:mapreduce.task.io.sort.mb

当map的产生数据非常大时,并且把mapreduce.task.io.sort.mb调大,那么map在整个计算过程中spill的次数就势必会降低,map task对磁盘的操作就会变少,

如果map tasks的瓶颈在磁盘上,这样调整就会大大提高map的计算性能。

map做sort和spill的内存结构如下如所示:


2.map在运行过程中,不停的向该buffer中写入已有的计算结果,但是该buffer并不一定能将全部的map输出缓存下来,当map输出超出一定阈值(比如100M),那么map就必须将该buffer中的数据写入到磁盘中去,这个过程在mapreduce中叫做spill。map并不是要等到将该buffer全部写满时才进行spill,因为如果全部写满了再去写spill,势必会造成map的计算部分等待buffer释放空间的情况。所以,map其实是当buffer被写满到一定程度(比如80%)时,就开始进行spill。

这个阈值也是由一个job的配置参数来控制,

mapreduce.map.sort.spill.percent,默认为0.80或80%。

这个参数同样也是影响spill频繁程度,进而影响map task运行周期对磁盘的读写频率的。但非特殊情况下,通常不需要人为的调整。调整mapreduce.task.io.sort.mb对用户来说更加方便。

3.当map task的计算部分全部完成后,如果map有输出,就会生成一个或者多个spill文件,这些文件就是map的输出结果。map在正常退出之前(cleanup),需要将这些spill合并(merge)成一个,所以map在结束之前还有一个merge的过程。merge的过程中,有一个参数可以调整这个过程的行为,该参数为:mapreduce.task.io.sort.factor。该参数默认为10。它表示当merge spill文件时,最多能有多少并行的stream向merge文件中写入。比如如果map产生的数据非常的大,产生的spill文件大于10,而mapreduce.task.io.sort.factor使用的是默认的10,那么当map计算完成做merge时,就没有办法一次将所有的spill文件merge成一个,而是会分多次,每次最多10个stream。这也就是说,当map的中间结果非常大,调大mapreduce.task.io.sort.factor,有利于减少merge次数,进而减少map对磁盘的读写频率,有可能达到优化作业的目的。

4.当job指定了combiner的时候,我们都知道map介绍后会在map端根据combiner定义的函数将map结果进行合并。运行combiner函数的时机有可能会是merge完成之前,或者之后,这个时机可以由一个参数控制,即mapreduce.map.combine.minspills(default 3),当job中设定了combiner,并且spill数大于等于3的时候,那么combiner函数就会在merge产生结果文件之前运行。通过这样的方式,就可以在spill非常多需要merge,并且很多数据需要做conbine的时候,减少写入到磁盘文件的数据数量,同样是为了减少对磁盘的读写频率,有可能达到优化作业的目的。

5.减少中间结果读写进出磁盘的方法不止这些,还有就是压缩。也就是说map的中间,无论是spill的时候,还是最后merge产生的结果文件,都是可以压缩的。压缩的好处在于,通过压缩减少写入读出磁盘的数据量。对中间结果非常大,磁盘速度成为map执行瓶颈的job,尤其有用。控制map中间结果是否使用压缩的参数为:mapreduce.map.output.compress(true/false)。 将这个参数设置为true时,那么map在写中间结果时,就会将数据压缩后再写入磁盘,读结果时也会采用先解压后读取数据。这样做的后果就是:写入磁盘的 中间结果数据量会变少,但是cpu会消耗一些用来压缩和解压。所以这种方式通常适合job中间结果非常大,瓶颈不在cpu,而是在磁盘的读写的情况。说的 直白一些就是用cpu换IO。根据观察,通常大部分的作业cpu都不是瓶颈,除非运算逻辑异常复杂。所以对中间结果采用压缩通常来说是有收益的。以下是一 个wordcount中间结果采用压缩和不采用压缩产生的map中间结果本地磁盘读写的数据量对比:

map中间结果不压缩:

map中间结果压缩:


可以看出,同样的job,同样的数据,在采用压缩的情况下,map中间结果能缩小将近10倍,如果map的瓶颈在磁盘,那么job的性能提升将会非常可观。

当采用map中间结果压缩的情况下,用户还可以选择压缩时采用哪种压缩格式进行压缩,现在hadoop支持的压缩格式有:GzipCodec,LzoCodec,BZip2Codec,LzmaCodec等压缩格式。通常来说,想要达到比较平衡的cpu和磁盘压缩比,LzoCodec比较适合。但也要取决于job的具体情况。用户若想要自行选择中间结果的压缩算法,可以设置配置参数:mapreduce.map.output.compress.codec=org.apache.hadoop.io.compress.DefaultCodec或者其他用户自行选择的压缩方式。


1.2 Map side相关参数调优

选项类型默认值描述
mapreduce.task.io.sort.mb
int100缓存map中间结果的buffer大小(in MB)
io.sort.record.percent

float0.05io.sort.mb中用来保存map output记录边界的百分比,其他缓存用来保存数据
io.sort.spill.percent
mapreduce.map.sort.spill.percent
float0.80map开始做spill操作的阈值
io.sort.factor
mapreduce.task.io.sort.factor
int10做merge操作时同时操作的stream数上限。
min.num.spill.for.combineint3combiner函数运行的最小spill数
mapred.compress.map.outputbooleanfalsemap中间结果是否采用压缩
mapred.map.output.compression.codecclass nameorg.apache.hadoop.io.

compress.DefaultCodec

map中间结果的压缩格式



2 Reduce side tuning参数2.1 ReduceTask运行内部原理

1.reduce的运行是分成三个阶段的。分别为copy->sort->reduce。由于job的每一个map都会根据reduce(n)数将数据分成map 输出结果分成n个partition,所以map的中间结果中是有可能包含每一个reduce需要处理的部分数据的。所以,为了优化reduce的执行时间,hadoop中是等job的第一个map结束后,所有的reduce就开始尝试从完成的map中下载该reduce对应的partition部分数据。这个过程就是通常所说的shuffle,也就是copy过程。

2.Reduce task在做shuffle时,实际上就是从不同的已经完成的map上去下载属于自己这个reduce的部分数据,由于map通常有许多个,所以对一个reduce来说,下载也可以是并行的从多个map下载,这个并行度是可以调整的,调整参数为:mapreduce.reduce.shuffle.parallelcopies(default 5)。默 认情况下,每个只会有5个并行的下载线程在从map下数据,如果一个时间段内job完成的map有100个或者更多,那么reduce也最多只能同时下载 5个map的数据,所以这个参数比较适合map很多并且完成的比较快的job的情况下调大,有利于reduce更快的获取属于自己部分的数据。

3.reduce 的每一个下载线程在下载某个map数据的时候,有可能因为那个map中间结果所在机器发生错误,或者中间结果的文件丢失,或者网络瞬断等等情况,这样 reduce的下载就有可能失败,所以reduce的下载线程并不会无休止的等待下去,当一定时间后下载仍然失败,那么下载线程就会放弃这次下载,并在随 后尝试从另外的地方下载(因为这段时间map可能重跑)。所以reduce下载线程的这个最大的下载时间段是可以调整的,调整参数为:mapred.reduce.copy.backoff(default 300秒)。如果集群环境的网络本身是瓶颈,那么用户可以通过调大这个参数来避免reduce下载线程被误判为失败的情况。不过在网络环境比较好的情况下,没有必要调整。通常来说专业的集群网络不应该有太大问题,所以这个参数需要调整的情况不多。

4.Reduce将map结果下载到本地时,同样也是需要进行merge的,所以mapreduce.task.io.sort.factor的配置选项同样会影响reduce进行merge时的行为,该参数的详细介绍上文已经提到,当发现reduce在shuffle阶段iowait非常的高的时候,就有可能通过调大这个参数来加大一次merge时的并发吞吐,优化reduce效率。

5.Reduce在shuffle阶段对下载来的map数据,并不是立刻就写入磁盘的,而是会先缓存在内存中,然后当使用内存达到一定量的时候才刷入磁盘。这个内存大小的控制就不像map一样可以通过mapreduce.task.io.sort.mb来设定了,而是通过另外一个参数来设置:mapreduce.reduce.shuffle.input.buffer.percent(default 0.7),这个参数其实是一个百分比,意思是说,shuffile在reduce内存中的数据最多使用内存量为:0.7 × maxHeap of reduce task。也就是说,如果该reduce task的最大heap使用量(通常通过mapreduce.reduce.java.opts来设置,比如设置为-Xmx1024m)的一定比例用来缓存数据。默认情况下,reduce会使用其heapsize的70%来在内存中缓存数据。如果reduce的heap由于业务原因调整的比较大,相应的缓存大小也会变大,这也是为什么reduce用来做缓存的参数是一个百分比,而不是一个固定的值了。

6.假设mapreduce.reduce.shuffle.input.buffer.percent为0.7,reduce task的max heapsize为1G,那么用来做下载数据缓存的内存就为大概700MB左右,这700M的内存,跟map端一样,也不是要等到全部写满才会往磁盘刷的,而是当这700M中被使用到了一定的限度(通常是一个百分比),就会开始往磁盘刷。这个限度阈值也是可以通过job参数来设定的,设定参数为:mapreduce.reduce.shuffle.merge.percent(default 0.66)。如果下载速度很快,很容易就把内存缓存撑大,那么调整一下这个参数有可能会对reduce的性能有所帮助。

7.当reduce将所有的map上对应自己partition的数据下载完成后,就会开始真正的reduce计算阶段(中间有个sort阶段通常时间非常短,几秒钟就完成了,因为整个下载阶段就已经是边下载边sort,然后边merge的)。当reduce task真正进入reduce函数的计算阶段的时候,有一个参数也是可以调整reduce的计算行为。也就是:mapreduce.reduce.input.buffer.percent(default 0.0)。 由于reduce计算时肯定也是需要消耗内存的,而在读取reduce需要的数据时,同样是需要内存作为buffer,这个参数是控制,需要多少的内存百 分比来作为reduce读已经sort好的数据的buffer百分比。默认情况下为0,也就是说,默认情况下,reduce是全部从磁盘开始读处理数据。 如果这个参数大于0,那么就会有一定量的数据被缓存在内存并输送给reduce,当reduce计算逻辑消耗内存很小时,可以分一部分内存用来缓存数据, 反正reduce的内存闲着也是闲着。


2.2 Reduce side相关参数调优

选项类型默认值描述
mapred.reduce.parallel.copiesint5每个reduce并行下载map结果的最大线程数
mapred.reduce.copy.backoffint300reduce下载线程最大等待时间(in sec)
io.sort.factorint10同上
mapred.job.shuffle.input.buffer.percentfloat0.7用来缓存shuffle数据的reduce task heap百分比
mapred.job.shuffle.merge.percentfloat0.66缓存的内存中多少百分比后开始做merge操作
mapred.job.reduce.input.buffer.percentfloat0.0sort完成后reduce计算阶段用来缓存数据的百分比

看完上述内容,你们掌握hadoop调优参数及原理是什么的方法了吗?如果还想学到更多技能或想了解更多相关内容,欢迎关注行业资讯频道,感谢各位的阅读!

参数 数据 结果 磁盘 内存 情况 缓存 调整 文件 过程 部分 阶段 时候 百分 百分比 线程 运行 时间 也就是 大小 数据库的安全要保护哪些东西 数据库安全各自的含义是什么 生产安全数据库录入 数据库的安全性及管理 数据库安全策略包含哪些 海淀数据库安全审计系统 建立农村房屋安全信息数据库 易用的数据库客户端支持安全管理 连接数据库失败ssl安全错误 数据库的锁怎样保障安全 墨子推演数据库设计 怎样复制下拉菜单的数据库 山东服务器电源哪家便宜 邮储软件开发中心笔试题 软件开发人员专长描述 vgg是如何训练数据库的 如何建立自己的数据库 软件开发方面的感悟 安徽通用软件开发定做价格 成都c语言软件开发哪家正规 华为存储服务器管理端口设置 北京数据库空投箱销售 平台电商软件开发公司 长沙一众互联网科技 联通宽带卡在后台服务器端口上 辽宁专业软件开发价格优惠 政府软件开发哪家好排行榜 阜阳软件开发项目管理 杨浦区网络技术服务咨询 网络安全多久体检一次 医院病案室网络安全 重大节假日网络安全通知 管家婆数据库版本更换如何弄 安徽通用软件开发定做价格 网络技术员试题库 乙方软件开发项目组职责 我的网络安全作文 数据库dbs的中文含义 方舟电脑版怎么进好友服务器 德惠什么是网络技术服务诚信经营
0