Python中多线程和多处理的指南是怎样的
发表于:2025-02-12 作者:千家信息网编辑
千家信息网最后更新 2025年02月12日,Python中多线程和多处理的指南是怎样的,相信很多没有经验的人对此束手无策,为此本文总结了问题出现的原因和解决方法,通过这篇文章希望你能解决这个问题。使用Python分析数据,如果使用了正确的数据结
千家信息网最后更新 2025年02月12日Python中多线程和多处理的指南是怎样的
Python中多线程和多处理的指南是怎样的,相信很多没有经验的人对此束手无策,为此本文总结了问题出现的原因和解决方法,通过这篇文章希望你能解决这个问题。
使用Python分析数据,如果使用了正确的数据结构和算法,有时可以大量提高程序的速度。实现此目的的一种方法是使用Muiltithreading(多线程)或Multiprocessing(多重处理)。 |
使用Python分析数据,如果使用了正确的数据结构和算法,有时可以大量提高程序的速度。实现此目的的一种方法是使用Muiltithreading(多线程)或Multiprocessing(多重处理)。
我们举一个例子,编写一个小的Python 脚本从Unsplash下载图像。我们将从一次下载一个图像的版本开始。接下来,我们使用线程来提高执行速度。
Python中多线程和多处理
多线程
简单地说,线程允许您并行地运行程序。花费大量时间等待外部事件的任务通常适合线程化。它们也称为I/O Bound任务例如从文件中读写,网络操作或使用API在线下载。让我们来看一个示例,它展示了使用线程的好处。
1. 没有线程
在本例中,我们希望通过顺序运行程序来查看从Unsplash API下载15张图像需要多长时间:
import requests import time img_urls = [ 'https://images.unsplash.com/photo-1516117172878-fd2c41f4a759', 'https://images.unsplash.com/photo-1532009324734-20a7a5813719', 'https://images.unsplash.com/photo-1524429656589-6633a470097c', 'https://images.unsplash.com/photo-1530224264768-7ff8c1789d79', 'https://images.unsplash.com/photo-1564135624576-c5c88640f235', 'https://images.unsplash.com/photo-1541698444083-023c97d3f4b6', 'https://images.unsplash.com/photo-1522364723953-452d3431c267', 'https://images.unsplash.com/photo-1513938709626-033611b8cc03', 'https://images.unsplash.com/photo-1507143550189-fed454f93097', 'https://images.unsplash.com/photo-1493976040374-85c8e12f0c0e', 'https://images.unsplash.com/photo-1504198453319-5ce911bafcde', 'https://images.unsplash.com/photo-1530122037265-a5f1f91d3b99', 'https://images.unsplash.com/photo-1516972810927-80185027ca84', 'https://images.unsplash.com/photo-1550439062-609e1531270e', 'https://images.unsplash.com/photo-1549692520-acc6669e2f0c' ] start = time.perf_counter() #start timer for img_url in img_urls: img_name = img_url.split('/')[3] #get image name from url img_bytes = requests.get(img_url).content with open(img_name, 'wb') as img_file: img_file.write(img_bytes) #save image to disk finish = time.perf_counter() #end timer print(f"Finished in {round(finish-start,2)} seconds") #results Finished in 23.101926751 seconds
一共用时23秒。
2. 多线程
让我们看看Pyhton中的线程模块如何显著地改进我们的程序执行:
import time from concurrent.futures import ThreadPoolExecutor def download_images(url): img_name = img_url.split('/')[3] img_bytes = requests.get(img_url).content with open(img_name, 'wb') as img_file: img_file.write(img_bytes) print(f"{img_name} was downloaded") start = time.perf_counter() #start timer with ThreadPoolExecutor() as executor: results = executor.map(download_images,img_urls) #this is Similar to map(func, *iterables) finish = time.perf_counter() #end timer print(f"Finished in {round(finish-start,2)} seconds") #results Finished in 5.544147536 seconds
我们可以看到,与不使用线程代码相比,使用线程代码可以显著提高速度。从23秒到5秒。
对于本例,请注意在创建线程时存在开销,因此将线程用于多个API调用是有意义的,而不仅仅是单个调用。
此外,对于密集的计算,如数据处理,图像处理多处理比线程执行得更好。
看完上述内容,你们掌握Python中多线程和多处理的指南是怎样的的方法了吗?如果还想学到更多技能或想了解更多相关内容,欢迎关注行业资讯频道,感谢各位的阅读!
线程
处理
数据
程序
图像
方法
速度
指南
显著
代码
任务
内容
数据结构
时间
更多
目的
算法
结构
问题
分析
数据库的安全要保护哪些东西
数据库安全各自的含义是什么
生产安全数据库录入
数据库的安全性及管理
数据库安全策略包含哪些
海淀数据库安全审计系统
建立农村房屋安全信息数据库
易用的数据库客户端支持安全管理
连接数据库失败ssl安全错误
数据库的锁怎样保障安全
奏响网络安全主旋律
etl开发数据库
网络技术盈利模式
php软件开发的就业岗位
思科网络技术工程师
计算机网络技术破坏罪
山西软件开发服务五星服务
软件开发竞争性比价
网络安全管理制度领导机构成立
贵阳机场网络安全
软件开发模型适宜采用
软件开发项目组织协调措施
没有密码进入服务器
亿纬锂能软件开发工程师
在绿书签中什么是网络安全
软件开发学一年半多少钱
如何建立网络安全组织架构
沈阳软件开发大公司有哪些
vba如何查看数据库表行数
汽车维修管理软件开发
银行负责网络安全职务
服务器操作系统管理制度
sql数据库长度和精度是什么
宁波宁海县靠谱软件开发首选
郑州网络软件开发
清空的数据库能找回吗
网络安全法罚款最高标准
软件开发的四大优势全面揭秘
天天美剧服务器
易语言局域网数据库