python怎么实现K最近邻居
发表于:2025-02-07 作者:千家信息网编辑
千家信息网最后更新 2025年02月07日,这篇文章主要讲解了"python怎么实现K最近邻居",文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习"python怎么实现K最近邻居"吧!背景介绍它可以用于
千家信息网最后更新 2025年02月07日python怎么实现K最近邻居
这篇文章主要讲解了"python怎么实现K最近邻居",文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习"python怎么实现K最近邻居"吧!
背景介绍
它可以用于分类和回归问题。但是,它更广泛地用于行业中的分类问题。K个最近邻居是一种简单的算法,可以存储所有可用案例,并通过其k个邻居的多数票对新案例进行分类。在用距离函数测量的K个最近邻居中,分配给该类别的案例最为常见。
这些距离函数可以是欧几里得距离,曼哈顿距离,明可夫斯基距离和汉明距离。前三个函数用于连续函数,第四个函数用于分类变量。如果K = 1,则将案例简单分配给其最近邻居的类别。有时,执行kNN建模时选择K确实是一个挑战。
KNN可以轻松地映射到我们的现实生活。如果您想了解一个没有信息的人,则可能想了解他的密友和他所进入的圈子并获得他/她的信息!
选择kNN之前要考虑的事项:
KNN在计算上很昂贵
变量应归一化,否则较大范围的变量可能会产生偏差
在进行kNN处理之前(例如离群值,噪声消除),在预处理阶段进行更多工作
下面来看使用Python实现的案例:
# importing required libraries
import pandas as pd
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score
train_data = pd.read_csv('train-data.csv')
test_data = pd.read_csv('test-data.csv')
print('Shape of training data :',train_data.shape)
print('Shape of testing data :',test_data.shape)
train_x = train_data.drop(columns=['Survived'],axis=1)
train_y = train_data['Survived']
test_x = test_data.drop(columns=['Survived'],axis=1)
test_y = test_data['Survived']
'''
sklearn K-Neighbors Classifier:
https://scikit-learn.org/stable/modules/generated/
sklearn.neighbors.KNeighborsClassifier.html
'''
model = KNeighborsClassifier()
model.fit(train_x,train_y)
print('\nThe number of neighbors used to predict the target : '\
,model.n_neighbors)
predict_train = model.predict(train_x)
print('\nTarget on train data',predict_train)
accuracy_train = accuracy_score(train_y,predict_train)
print('accuracy_score on train dataset : ', accuracy_train)
predict_test = model.predict(test_x)
print('Target on test data',predict_test)
accuracy_test = accuracy_score(test_y,predict_test)
print('accuracy_score on test dataset : ', accuracy_test)
运行结果:
Shape of training data : (712, 25)
Shape of testing data : (179, 25)
The number of neighbors used to predict the target : 5
Target on train data [0 1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 0 0 0
1 0 0 0 0 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 0 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0 1 0 1 0 0 0 1 1 1 0 1 0 0 0 0 0 1 0 0 1 0 1 1 1 0 1 0 1 0
0 1 1 0 1 0 0 1 0 0 0 0 1 0 0 1 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 0 0 1 0 0
0 0 0 1 1 0 0 1 0 0 1 0 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
0 0 1 1 1 0 0 1 0 1 0 0 0 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 0 0
1 1 1 1 1 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 0 1 0 0 0 1 1 0 1 0 0 1
1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 1 0 1 0
0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 1 1 1 0 0 1 1 0 1 0 1 0 1 1 1 1
0 1 1 1 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 1 1 0 0 0 1 0 1 0 0 1 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0
0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1
1 0 0 0 0 1 0 0 0 1 1 0 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 1 0 0 0
0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 0 1 1 1 0 1 1 1 0
1 0 0 0 0 1 0 1 0 1 0 1 1 0 0 1 0 1 1 0 1 0 0 0 1 0 1 1 0 0 0 0 1 0 0 0 1
0 0 0 1 0 1 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 1 0 0 0 1 0 1 0 0 0
1 1 0 0 0 0 0 1 0 0 1 0 1 0 0 1 1 0 0 0 1 0 1 0 0 1 1 0 0 0 1 0 0 1 0 1 0
1 0 1 1 1 0 0 1 0]
accuracy_score on train dataset : 0.8047752808988764
Target on test data [0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 0 0
1 0 0 1 1 0 0 0 1 0 0 1 1 1 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 1 0 0 0 1 0 1 1 0 1 1 0 0 1 0 0 1
0 1 0 0 1 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 0 0 1 1 0 0 0 1 0 1 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0]
accuracy_score on test dataset : 0.7150837988826816
感谢各位的阅读,以上就是"python怎么实现K最近邻居"的内容了,经过本文的学习后,相信大家对python怎么实现K最近邻居这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是,小编将为大家推送更多相关知识点的文章,欢迎关注!
邻居
函数
案例
分类
变量
问题
学习
信息
内容
更多
分配
选择
较大
昂贵
三个
事项
偏差
噪声
圈子
密友
数据库的安全要保护哪些东西
数据库安全各自的含义是什么
生产安全数据库录入
数据库的安全性及管理
数据库安全策略包含哪些
海淀数据库安全审计系统
建立农村房屋安全信息数据库
易用的数据库客户端支持安全管理
连接数据库失败ssl安全错误
数据库的锁怎样保障安全
网络安全调查的图片
数据库系统组成部分包括
千千静听歌词服务器连接失败怎么办
任意游官网DNS服务器
孤狼云服务器怎么样
秦皇岛森雅网络技术
微信php软件开发人员
青浦区品牌软件开发价格咨询
软件开发技术能力说明
汽车电子公司软件开发
搅拌流场模拟软件开发
软件开发技术转让价格
应急处置系统网络安全
创世神服务器配置文件
哪家的云服务器安全怎么购买
数据库数据交换的功能
对网络安全正确的理解是
黑魂登不上服务器
数据库缩减
网络安全与人民的关系的题目
中国教育部中小学生网络安全
计算机网络技术期末课题
请论述数据库完整性概念
数据库表级锁 行级锁
有关网络安全宣传片
苹果手机还原无法验证服务器身份
秦皇岛森雅网络技术
数据库表中无法创建关系
河南软件开发单招
app软件开发语言框架