千家信息网

.NET Core中的HttpClientFactory类怎么用

发表于:2025-01-20 作者:千家信息网编辑
千家信息网最后更新 2025年01月20日,小编给大家分享一下.NET Core中的HttpClientFactory类怎么用,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一
千家信息网最后更新 2025年01月20日.NET Core中的HttpClientFactory类怎么用

小编给大家分享一下.NET Core中的HttpClientFactory类怎么用,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!

一、HttpClient使用

在C#中,如果我们需要向某特定的URL地址发送Http请求的时候,通常会用到HttpClient类。会将HttpClient包裹在using内部进行声明和初始化,如下面的代码:

using (var httpClient = new HttpClient()){    // 逻辑处理代码}

HttpClient类包含了许多有用的方法,使用上面的代码,可以满足绝大多数的需求,但是如果对其使用不当时,可能会出现意想不到的事情。

上面代码的技术范点:当你使用继承了IDisposable接口的对象时,建议在using代码块中声明和初始化,当using代码段执行完成后,会自动释放该对象而不需要手动进行显示Dispose操作。

对象所占用资源应该确保及时被释放掉,但是,对于网络连接而言,这是错误的。具体原因有下面两点:

  • 网络连接是需要耗费一定时间的,频繁开启与关闭连接,性能会受到影响。

  • 开启网络连接时会占用低层socket资源,但在HttpClient调用其本身的Dispose方法时,并不能立即释放该资源,这意味着你的程序可能会因为耗尽连接资源而产生预期之外的异常。

看下面一段代码

using System;using System.Collections.Generic;using System.Linq;using System.Net.Http;using System.Text;using System.Threading.Tasks;namespace HttpClientDemo{    class Program    {        static void Main(string[] args)        {            //using (var httpClient = new HttpClient())            //{            //    // 逻辑处理代码            //}            HttpAsync();            Console.WriteLine("Hello World!");            Console.Read();        }        public static async void HttpAsync()        {            for (int i = 0; i < 10; i++)            {                using (var client = new HttpClient())                {                    var result = await client.GetAsync("http://www.baidu.com");                    Console.WriteLine($"{i}:{result.StatusCode}");                }            }        }    }}

运行项目输出结果后,通过netstate查看下TCP连接情况,会发现连接依然存在,状态为"TIME_WAIT"(继续等待看是否还有延迟的包会传输过来)。

这里就会出现一个坑:在高并发的情况下,连接来不及释放,socket连接被耗尽,耗尽之后就会出现错误。就是会出现"各种套接字问题"。

那么如何解决这个问题呢?比较好的解决方法是延长HttpClient对象的使用寿命,实现HttpClient对象的复用,比如对其建一个静态的对象:

private static HttpClient Client = new HttpClient();

我们使用这种方式优化上面的代码

using System;using System.Net.Http;namespace HttpClientDemo{    class Program    {        private static readonly HttpClient _client = new HttpClient();        static void Main(string[] args)        {            HttpAsync();            Console.WriteLine("Hello World");            Console.ReadKey();        }        public static async void HttpAsync()        {            for (int i = 0; i < 10; i++)            {                var result = await _client.GetAsync("http://www.baidu.com");                Console.WriteLine($"{i}:{result.StatusCode}");            }        }    }}

这样调整HttpClient的引用后,虽然可以解决一些问题,但是仍然存在一些问题:

  • 因为是复用的HttpClient,那么一些公共的设置就没办法灵活的调整,如请求头的自定义。

  • 因为HttpClient请求每个url时,会缓存url对应的主机ip,从而会导致DNS更新失效。

为了解决这些问题,在.NET Core 2.1中引入了新的HttpClientFactory类。

二、HttpClientFactory使用

微软在.NET Core 2.1中新引入了HttpClientFactory类,具有如下的优势:

  • HttpClientFactory很高效,可以最大程度上节省系统的sock而。

  • Factory,顾名思义HttpClientfactory就是HttpClient的工厂,内部已经帮我们处理好了对HttpClient的管理,不需要我们人工进行对象释放,同时,支持自定义请求头、支持DNS更新等。

我们用一个ASP.NET Core的程序作为示例,它的用法非常简单,首先是对其进行IOC注册:

public void ConfigureServices(IServiceCollection services){    // 注入HttpClient    services.AddHttpClient("client_1", config =>  //这里指定的name=client_1,可以方便我们后期服用该实例    {        config.BaseAddress = new Uri("http://www.baidu.com");        config.DefaultRequestHeaders.Add("header_1", "header_1");    });    services.AddHttpClient("client_2", config =>    {        config.BaseAddress = new Uri("https://www.qq.com/");        config.DefaultRequestHeaders.Add("header_2", "header_2");    });    services.AddHttpClient();    services.AddControllers();}

然后在控制器里面通过IHttpClientFactory创建一个HttpClient对象,之后的操作跟以前一样,但不需要担心其内部资源的释放:

using System.Net.Http;using System.Threading.Tasks;using Microsoft.AspNetCore.Mvc;namespace HttpClientFactoryDemo.Controllers{    [Route("api/[controller]")]    [ApiController]    public class DemoController : ControllerBase    {        IHttpClientFactory _httpClientFactory;        ///         /// 通过构造函数实现注入        ///         ///         public DemoController(IHttpClientFactory httpClientFactory)        {            _httpClientFactory = httpClientFactory;        }        public async Task Get()        {            var client = _httpClientFactory.CreateClient("client_1"); //复用在Startup中定义的client_1的httpclient            var result = await client.GetStringAsync("/page1.html");            var client2 = _httpClientFactory.CreateClient(); //新建一个HttpClient            var result2 = await client.GetAsync("http://www.baidu.com");            return result2.StatusCode.ToString();        }    }}

程序运行结果:

AddHttpClient的源码:

public static IServiceCollection AddHttpClient(this IServiceCollection services){    if (services == null)    {        throw new ArgumentNullException(nameof(services));    }    services.AddLogging();    services.AddOptions();    //    // Core abstractions    //    services.TryAddTransient();    services.TryAddSingleton();    //    // Typed Clients    //    services.TryAdd(ServiceDescriptor.Singleton(typeof(ITypedHttpClientFactory<>), typeof(DefaultTypedHttpClientFactory<>)));    //    // Misc infrastructure    //    services.TryAddEnumerable(ServiceDescriptor.Singleton());    return services;}

看下面这句代码:

services.TryAddSingleton();

这里添加依赖注入的时候为IHttpClientFactory接口绑定了DefaultHttpClientFactory类。

我们在来看IHttpClientFactory接口中关键的CreateClient方法:

public HttpClient CreateClient(string name){    if (name == null)    {        throw new ArgumentNullException(nameof(name));    }    var entry = _activeHandlers.GetOrAdd(name, _entryFactory).Value;    var client = new HttpClient(entry.Handler, disposeHandler: false);    StartHandlerEntryTimer(entry);    var options = _optionsMonitor.Get(name);    for (var i = 0; i < options.HttpClientActions.Count; i++)    {        options.HttpClientActions[i](client);    }    return client;}

从代码中我们可以看出:HttpClient的创建不在是简单的new HttpClient(),而是传入了两个参数:HttpMessageHandler handler与bool disposeHandler。

disposeHandler参数为false时表示要重用内部的handler对象。handler参数则从上一句的代码中可以看出是以name为键值从一字典中取出,又因为DefaultHttpClientFactory类是通过TryAddSingleton方法注册的,也就意味着其为单例,那么这个内部字典便是唯一的,每个键值对应的ActiveHandlerTrackingEntry对象也是唯一,该对象内部中包含着handler。

下一句代码StartHandlerEntryTimer(entry); 开启了ActiveHandlerTrackingEntry对象的过期计时处理。默认过期时间是2分钟。

internal void ExpiryTimer_Tick(object state){    var active = (ActiveHandlerTrackingEntry)state;    // The timer callback should be the only one removing from the active collection. If we can't find    // our entry in the collection, then this is a bug.    var removed = _activeHandlers.TryRemove(active.Name, out var found);    Debug.Assert(removed, "Entry not found. We should always be able to remove the entry");    Debug.Assert(object.ReferenceEquals(active, found.Value), "Different entry found. The entry should not have been replaced");    // At this point the handler is no longer 'active' and will not be handed out to any new clients.    // However we haven't dropped our strong reference to the handler, so we can't yet determine if    // there are still any other outstanding references (we know there is at least one).    //    // We use a different state object to track expired handlers. This allows any other thread that acquired    // the 'active' entry to use it without safety problems.    var expired = new ExpiredHandlerTrackingEntry(active);    _expiredHandlers.Enqueue(expired);    Log.HandlerExpired(_logger, active.Name, active.Lifetime);    StartCleanupTimer();}

先是将ActiveHandlerTrackingEntry对象传入新的ExpiredHandlerTrackingEntry对象。

public ExpiredHandlerTrackingEntry(ActiveHandlerTrackingEntry other){    Name = other.Name;    _livenessTracker = new WeakReference(other.Handler);    InnerHandler = other.Handler.InnerHandler;}

在其构造方法内部,handler对象通过弱引用方式关联着,不会影响其被GC释放。

然后新建的ExpiredHandlerTrackingEntry对象被放入专用的队列。

最后开始清理工作,定时器的时间间隔设定为每10秒一次。

internal void CleanupTimer_Tick(object state){    // Stop any pending timers, we'll restart the timer if there's anything left to process after cleanup.    //    // With the scheme we're using it's possible we could end up with some redundant cleanup operations.    // This is expected and fine.    //    // An alternative would be to take a lock during the whole cleanup process. This isn't ideal because it    // would result in threads executing ExpiryTimer_Tick as they would need to block on cleanup to figure out    // whether we need to start the timer.    StopCleanupTimer();    try    {        if (!Monitor.TryEnter(_cleanupActiveLock))        {            // We don't want to run a concurrent cleanup cycle. This can happen if the cleanup cycle takes            // a long time for some reason. Since we're running user code inside Dispose, it's definitely            // possible.            //            // If we end up in that position, just make sure the timer gets started again. It should be cheap            // to run a 'no-op' cleanup.            StartCleanupTimer();            return;        }        var initialCount = _expiredHandlers.Count;        Log.CleanupCycleStart(_logger, initialCount);        var stopwatch = ValueStopwatch.StartNew();        var disposedCount = 0;        for (var i = 0; i < initialCount; i++)        {            // Since we're the only one removing from _expired, TryDequeue must always succeed.            _expiredHandlers.TryDequeue(out var entry);            Debug.Assert(entry != null, "Entry was null, we should always get an entry back from TryDequeue");            if (entry.CanDispose)            {                try                {                    entry.InnerHandler.Dispose();                    disposedCount++;                }                catch (Exception ex)                {                    Log.CleanupItemFailed(_logger, entry.Name, ex);                }            }            else            {                // If the entry is still live, put it back in the queue so we can process it                // during the next cleanup cycle.                _expiredHandlers.Enqueue(entry);            }        }        Log.CleanupCycleEnd(_logger, stopwatch.GetElapsedTime(), disposedCount, _expiredHandlers.Count);    }    finally    {        Monitor.Exit(_cleanupActiveLock);    }    // We didn't totally empty the cleanup queue, try again later.    if (_expiredHandlers.Count > 0)    {        StartCleanupTimer();    }}

上述方法核心是判断是否handler对象已经被GC,如果是的话,则释放其内部资源,即网络连接。

回到最初创建HttpClient的代码,会发现并没有传入任何name参数值。这是得益于HttpClientFactoryExtensions类的扩展方法。

public static HttpClient CreateClient(this IHttpClientFactory factory){    if (factory == null)    {        throw new ArgumentNullException(nameof(factory));    }    return factory.CreateClient(Options.DefaultName);}

Options.DefaultName的值为string.Empty。

以上是".NET Core中的HttpClientFactory类怎么用"这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注行业资讯频道!

0