千家信息网

Java遗传算法的基本概念和实现方法是什么

发表于:2024-12-01 作者:千家信息网编辑
千家信息网最后更新 2024年12月01日,这篇文章主要介绍"Java遗传算法的基本概念和实现方法是什么",在日常操作中,相信很多人在Java遗传算法的基本概念和实现方法是什么问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对
千家信息网最后更新 2024年12月01日Java遗传算法的基本概念和实现方法是什么

这篇文章主要介绍"Java遗传算法的基本概念和实现方法是什么",在日常操作中,相信很多人在Java遗传算法的基本概念和实现方法是什么问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答"Java遗传算法的基本概念和实现方法是什么"的疑惑有所帮助!接下来,请跟着小编一起来学习吧!

如上图(左)所示,遗传算法的个体由多条染色体组成,每条染色体由多个基因组成。上图(右)展示了染色体分割和组合的方式。_

遗传算法的概念

自然选择的过程从选择群体中最适应环境的个体开始。后代继承了父母的特性,并且这些特性将添加到下一代中。如果父母具有更好的适应性,那么它们的后代将更易于存活。迭代地进行该自然选择的过程,最终,我们将得到由最适应环境的个体组成的一代。

这一概念可以被应用于搜索问题中。我们考虑一个问题的诸多解决方案,并从中搜寻出最佳方案。

遗传算法含以下五步:

  1. 初始化

  2. 个体评价(计算适应度函数)

  3. 选择运算

  4. 交叉运算

  5. 变异运算

初始化

该过程从种群的一组个体开始,且每一个体都是待解决问题的一个候选解。

个体以一组参数(变量)为特征,这些特征被称为基因,串联这些基因就可以组成染色体(问题的解)。

在遗传算法中,单个个体的基因组以字符串的方式呈现,通常我们可以使用二进制(1 和 0 的字符串)编码,即一个二进制串代表一条染色体串。因此可以说我们将基因串或候选解的特征编码在染色体中。

种群、染色体和基因

个体评价(计算适应度函数)

个体评价利用适应度函数评估了该个体对环境的适应度(与其它个体竞争的能力)。每一个体都有适应度评分,个体被选中进行繁殖的可能性取决于其适应度评分。适应度函数值越大,解的质量就越高。适应度函数是遗传算法进化的驱动力,也是进行自然选择的唯一标准,它的设计应结合求解问题本身的要求而定。

选择运算

选择运算的目的是选出适应性最好的个体,并使它们将基因传到下一代中。基于其适应度评分,我们选择多对较优个体(父母)。适应度高的个体更易被选中繁殖,即将较优父母的基因传递到下一代。

交叉运算

交叉运算是遗传算法中最重要的阶段。对每一对配对的父母,基因都存在随机选中的交叉点。

举个例子,下图的交叉点为 3:

父母间在交叉点之前交换基因,从而产生了后代。

父母间交换基因,然后产生的新后代被添加到种群中。

变异运算

在某些形成的新后代中,它们的某些基因可能受到低概率变异因子的作用。这意味着二进制位串中的某些位可能会翻转。

变异运算前后

变异运算可用于保持种群内的多样性,并防止过早收敛。

终止

在群体收敛的情况下(群体内不产生与前一代差异较大的后代)该算法终止。也就是说遗传算法提供了一组问题的解。

案例实现

种群的规模恒定。新一代形成时,适应度最差的个体凋亡,为后代留出空间。这些阶段的序列被不断重复,以产生优于先前的新一代。

这一迭代过程的伪代码:

STARTGenerate the initial populationCompute fitnessREPEAT    Selection    Crossover    Mutation    Compute fitnessUNTIL population has convergedSTOP

Java 中的实例实现

以下展示的是遗传算法在 Java 中的示例实现,我们可以随意调试和修改这些代码。给定一组五个基因,每一个基因可以保存一个二进制值 0 或 1。这里的适应度是基因组中 1 的数量。如果基因组内共有五个 1,则该个体适应度达到最大值。

如果基因组内没有 1,那么个体的适应度达到最小值。该遗传算法希望最大化适应度,并提供适应度达到最大的个体所组成的群体。注意:本例中,在交叉运算与突变运算之后,适应度最低的个体被新的,适应度最高的后代所替代。

import java.util.Random;/** * * @author Vijini*///Main classpublic class SimpleDemoGA {    Population population = new Population();    Individual fittest;    Individual secondFittest;    int generationCount = 0;    public static void main(String[] args) {        Random rn = new Random();        SimpleDemoGA demo = new SimpleDemoGA();        //Initialize population        demo.population.initializePopulation(10);        //Calculate fitness of each individual        demo.population.calculateFitness();        System.out.println("Generation: " + demo.generationCount + " Fittest: " + demo.population.fittest);        //While population gets an individual with maximum fitness        while (demo.population.fittest < 5) {            ++demo.generationCount;            //Do selection            demo.selection();            //Do crossover            demo.crossover();            //Do mutation under a random probability            if (rn.nextInt()%7 < 5) {                demo.mutation();            }            //Add fittest offspring to population            demo.addFittestOffspring();            //Calculate new fitness value            demo.population.calculateFitness();            System.out.println("Generation: " + demo.generationCount + " Fittest: " + demo.population.fittest);        }        System.out.println("\nSolution found in generation " + demo.generationCount);        System.out.println("Fitness: "+demo.population.getFittest().fitness);        System.out.print("Genes: ");        for (int i = 0; i < 5; i++) {            System.out.print(demo.population.getFittest().genes[i]);        }        System.out.println("");    }    //Selection    void selection() {        //Select the most fittest individual        fittest = population.getFittest();        //Select the second most fittest individual        secondFittest = population.getSecondFittest();    }    //Crossover    void crossover() {        Random rn = new Random();        //Select a random crossover point        int crossOverPoint = rn.nextInt(population.individuals[0].geneLength);        //Swap values among parents        for (int i = 0; i < crossOverPoint; i++) {            int temp = fittest.genes[i];            fittest.genes[i] = secondFittest.genes[i];            secondFittest.genes[i] = temp;        }    }    //Mutation    void mutation() {        Random rn = new Random();        //Select a random mutation point        int mutationPoint = rn.nextInt(population.individuals[0].geneLength);        //Flip values at the mutation point        if (fittest.genes[mutationPoint] == 0) {            fittest.genes[mutationPoint] = 1;        } else {            fittest.genes[mutationPoint] = 0;        }        mutationPoint = rn.nextInt(population.individuals[0].geneLength);        if (secondFittest.genes[mutationPoint] == 0) {            secondFittest.genes[mutationPoint] = 1;        } else {            secondFittest.genes[mutationPoint] = 0;        }    }    //Get fittest offspring    Individual getFittestOffspring() {        if (fittest.fitness > secondFittest.fitness) {            return fittest;        }        return secondFittest;    }    //Replace least fittest individual from most fittest offspring    void addFittestOffspring() {        //Update fitness values of offspring        fittest.calcFitness();        secondFittest.calcFitness();        //Get index of least fit individual        int leastFittestIndex = population.getLeastFittestIndex();        //Replace least fittest individual from most fittest offspring        population.individuals[leastFittestIndex] = getFittestOffspring();    }}//Individual classclass Individual {    int fitness = 0;    int[] genes = new int[5];    int geneLength = 5;    public Individual() {        Random rn = new Random();        //Set genes randomly for each individual        for (int i = 0; i < genes.length; i++) {            genes[i] = rn.nextInt() % 2;        }        fitness = 0;    }    //Calculate fitness    public void calcFitness() {        fitness = 0;        for (int i = 0; i < 5; i++) {            if (genes[i] == 1) {                ++fitness;            }        }    }}//Population classclass Population {    int popSize = 10;    Individual[] individuals = new Individual[10];    int fittest = 0;    //Initialize population    public void initializePopulation(int size) {        for (int i = 0; i < individuals.length; i++) {            individuals[i] = new Individual();        }    }    //Get the fittest individual    public Individual getFittest() {        int maxFit = Integer.MIN_VALUE;        for (int i = 0; i < individuals.length; i++) {            if (maxFit <= individuals[i].fitness) {                maxFit = i;            }        }        fittest = individuals[maxFit].fitness;        return individuals[maxFit];    }    //Get the second most fittest individual    public Individual getSecondFittest() {        int maxFit1 = 0;        int maxFit2 = 0;        for (int i = 0; i < individuals.length; i++) {            if (individuals[i].fitness > individuals[maxFit1].fitness) {                maxFit2 = maxFit1;                maxFit1 = i;            } else if (individuals[i].fitness > individuals[maxFit2].fitness) {                maxFit2 = i;            }        }        return individuals[maxFit2];    }    //Get index of least fittest individual    public int getLeastFittestIndex() {        int minFit = 0;        for (int i = 0; i < individuals.length; i++) {            if (minFit >= individuals[i].fitness) {                minFit = i;            }        }        return minFit;    }    //Calculate fitness of each individual    public void calculateFitness() {        for (int i = 0; i < individuals.length; i++) {            individuals[i].calcFitness();        }        getFittest();    }}

到此,关于"Java遗传算法的基本概念和实现方法是什么"的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注网站,小编会继续努力为大家带来更多实用的文章!

个体 适应度 基因 算法 遗传 运算 后代 选择 染色体 父母 问题 交叉 染色 概念 方法 函数 变异 种群 二进制 基因组 数据库的安全要保护哪些东西 数据库安全各自的含义是什么 生产安全数据库录入 数据库的安全性及管理 数据库安全策略包含哪些 海淀数据库安全审计系统 建立农村房屋安全信息数据库 易用的数据库客户端支持安全管理 连接数据库失败ssl安全错误 数据库的锁怎样保障安全 东海智能网络技术创新服务 服务器填 baoli 进入 班主任网络安全教育总结 网络安全骨干建设方案 青铜峡法院网络安全招标 网络安全怎么写最好看 linux服务器域名 ecshop报数据库错误 深德软件开发有限公司电话 数据库如何显示一个视图 软件开发结束原生代码 服务器网卡最大是多少 杭州边神网络技术有限公司客服 预防网络安全主题班会百度文库 朝阳区咨询软件开发概况 滴滴下架的原因设计网络安全 中国的网络安全做得怎么样 安全接入服务器地址是北京 全栈网络安全工程师是什么意思 深圳风禾尽起网络技术 辽宁大规模软件开发项目信息 数据库的主题 中欧数字经济和网络安全 扬州 中国电子网络安全大会 西游骑物网络技术 数据库服务器安全性 华为服务器错误代码 超市管理数据库设计论文 苹果无线网络安全设置 怎么夸做软件开发的人
0