千家信息网

mysql优化器追踪分析

发表于:2025-01-23 作者:千家信息网编辑
千家信息网最后更新 2025年01月23日,本篇内容主要讲解"mysql优化器追踪分析",感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习"mysql优化器追踪分析"吧!以下 left join语句,d表与
千家信息网最后更新 2025年01月23日mysql优化器追踪分析

本篇内容主要讲解"mysql优化器追踪分析",感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习"mysql优化器追踪分析"吧!

以下 left join语句,d表与s表关联,当where条件在d.deptid上时,s表无法走索引。因此通过开启trace方式做一些追踪。root@(none) 09:20:20>explain SELECT * FROM SSS.DEPARTMENT d LEFT JOIN ppp.shop s ON d.DEPTID = s.DEPTID WHERE d.DEPTID = '00001111';+----+-------------+-------+------------+-------+----------------------------+---------+---------+-------+--------+----------+-------------+| id | select_type | table | partitions | type  | possible_keys              | key     | key_len | ref   | rows   | filtered | Extra       |+----+-------------+-------+------------+-------+----------------------------+---------+---------+-------+--------+----------+-------------+|  1 | SIMPLE      | d     | NULL       | const | PRIMARY,INDEX_DEPARTMENT_5 | PRIMARY | 130     | const |      1 |   100.00 | NULL        ||  1 | SIMPLE      | s     | NULL       | ALL   | NULL                       | NULL    | NULL    | NULL  | 978629 |   100.00 | Using where |+----+-------------+-------+------------+-------+----------------------------+---------+---------+-------+--------+----------+-------------+

开启optimizer_trace:

set optimizer_trace='enabled=on';

set optimizer_trace_max_mem_size=1000000;

set end_markers_in_json=on;

执行语句

select * from information_schema.optimizer_trace\G;

root@(none) 09:39:58> select * from information_schema.optimizer_trace\G;*************************** 1. row ***************************                            QUERY: SELECT * FROM SSS.DEPARTMENT d LEFT JOIN ppp.shop s ON d.DEPTID = s.DEPTID WHERE d.DEPTID = '00001111'                            TRACE: {  "steps": [    #准备阶段    {      "join_preparation": {        "select#": 1,        "steps": [          {            #expanded_query,解析查询语句,"*" 转换成字段,left join on 处转化成on((`SSS`.`d`.`Deptid` = convert(`ppp`.`s`.`Deptid` using utf8mb4))))            "expanded_query": "/* select#1 */ select `SSS`.`d`.`Organid` AS `Organid`,。。。`s`.`Status` AS `Status`,`ppp`.`s`.`Stylecategoryid` AS `Stylecategoryid`,`ppp`.`s`.`Turnontime` AS `Turnontime` from (`SSS`.`department` `d` left join `ppp`.`shop` `s` on((`SSS`.`d`.`Deptid` = convert(`ppp`.`s`.`Deptid` using utf8mb4)))) where (`SSS`.`d`.`Deptid` = '00001111')"          },          {          #转化成的nested join语句:            "transformations_to_nested_joins": {              "transformations": [                "parenthesis_removal"              ] /* transformations */,              "expanded_query": "/* select#1 */ select `SSS`.`d`.`Organid`。。。 `SSS`.`d`.`Guidecode` AS `Guidecode`,`SSS`.`d`.`Createdate` AS `Createdate`,`SSS`.`d`.`Plateformuser` AS `Plateformuser`,`SSS`.`d`.`Plateformdept` AS `Plateformdept`,`SSS`.`d`.`Agentuser` AS `Agentuser`,`SSS`.`d`.`Agentdept` AS `Agentdept`,`SSS`.`d`.`Shopstatus` AS `Shopstatus`,`SSS`.`d`.`Deptshortname` AS `Deptshortname`,`SSS`.`d`.`Storetype` AS `Storetype`,`SSS`.`d`.`Depttype` AS `Depttype`,`ppp`.`s`.`Shopid` AS `Shopid`,`ppp`.`s`.`Objectid` AS `Objectid`,`ppp`.`s`.`Shopname` AS `Shopname`,`ppp`Tel`,`ppp`.`s`.`Introduce` AS `Introduce`,`ppp`.`s`.`Industry` AS `Industry`,`ppp`.`s`.`Address` AS `Address`,`ppp`.`s`.`Shop360image` AS `Shop360image`,`ppp`.`s`.`Domain` AS `Domain`,`ppp`.`s`.`Organid` AS `Organid`,`ppp`.`s`.`Deptid` AS `Deptid`,`ppp`.`s`.`Brandids` AS `Brandids`,`ppp`.`s`.`Extdata` AS `Extdata`,`ppp`.`s`.`Ranking` AS `Ranking`,`ppp`.`s`.`Isdelete` AS `Isdelete`,`ppp`.`s`.`District` AS `District`,`ppp`.`s`.`City` AS `City`,`ppp`.`s`.`Province` AS `Province`,`ppp`.`s`.`Phone` AS `Phone`,`ppp`.`s`.`Watermarkimage` AS `Watermarkimage`,`ppp`.`s`.`Drawingimage` AS `Drawingimage`,`ppp`.`s`.`Contactuser` AS `Contactuser`,`ppp`.`s`.`Panoloadingimage` AS `Panoloadingimage`,`ppp`.`s`.`Lngandlat` AS `Lngandlat`,`ppp`.`s`.`Createtime` AS `Createtime`,`ppp`.`s`.`Shoptype` AS `Shoptype`,`ppp`.`s`.`Status` AS `Status`,`ppp`.`s`.`Stylecategoryid` AS `Stylecategoryid`,`ppp`.`s`.`Turnontime` AS `Turnontime` from `SSS`.`department` `d` left join `ppp`.`shop` `s` on((`SSS`.`d`.`Deptid` = convert(`ppp`.`s`.`Deptid` using utf8mb4))) where (`SSS`.`d`.`Deptid` = '00001111')"            } /* transformations_to_nested_joins */          }        ] /* steps */      } /* join_preparation */    },#准备阶段结束            {    #优化阶段:      "join_optimization": {        "select#": 1,        "steps": [          {           #处理where条件部分,化简条件:            "condition_processing": {              "condition": "WHERE",              "original_condition": "(`SSS`.`d`.`Deptid` = '00001111')",---原始条件              "steps": [                {                  "transformation": "equality_propagation", ----等式处理                  "resulting_condition": "(`SSS`.`d`.`Deptid` = '00001111')"                },                {                  "transformation": "constant_propagation",-----常量处理                  "resulting_condition": "(`SSS`.`d`.`Deptid` = '00001111')"                },                {                  "transformation": "trivial_condition_removal",----去除多余无关的条件处理                  "resulting_condition": "(`SSS`.`d`.`Deptid` = '00001111')"                }              ] /* steps */            } /* condition_processing */          },#结束,因为这里已经够简化了,所以三次处理后都是同样的。                    {          #替代产生的字段            "substitute_generated_columns": {            } /* substitute_generated_columns */          },                    {          #表依赖关系检查            "table_dependencies": [              {                "table": "`SSS`.`department` `d`", ------表d                "row_may_be_null": false,                "map_bit": 0,                "depends_on_map_bits": [                ] /* depends_on_map_bits */              },              {                "table": "`ppp`.`shop` `s`", --------表s                "row_may_be_null": true,                "map_bit": 1,                "depends_on_map_bits": [                  0                ] /* depends_on_map_bits */              }            ] /* table_dependencies */          }, #表依赖关系检查结束                              {#找出可使用索引的字段:            "ref_optimizer_key_uses": [              {                "table": "`SSS`.`department` `d`",                "field": "Deptid", ----------可用的是Deptid                "equals": "'00001111'",                "null_rejecting": false ---              },              {                "table": "`SSS`.`department` `d`",                "field": "Deptid",                "equals": "'00001111'",                "null_rejecting": false              }            ] /* ref_optimizer_key_uses */          },                    {#评估每个表单表访问行数及相应代价。            "rows_estimation": [              {                "table": "`SSS`.`department` `d`",                "rows": 1,   ---返回1行                "cost": 1,   ---代价为1                "table_type": "const",  ---d表使用的方式是const,即根据主键索引获取                "empty": false              },              {                "table": "`ppp`.`shop` `s`",                "table_scan": { -------s表直接使用全表扫描                  "rows": 978662, ------扫描978662行                  "cost": 8109    ------代价为8109                } /* table_scan */              }            ] /* rows_estimation */          },                              {#评估执行计划,这里考虑两表连接            "considered_execution_plans": [              {                "plan_prefix": [------------------执行计划的前缀,这里是d表,因为是left join 我认为指的应该是驱动表的意思                  "`SSS`.`department` `d`"                ] /* plan_prefix */,                "table": "`ppp`.`shop` `s`",                "best_access_path": {-------最优访问路径                  "considered_access_paths": [考虑的访问路径                    {                      "rows_to_scan": 978662,---扫描978662行                      "access_type": "scan",--------全表扫描的方式                      "resulting_rows": 978662,                      "cost": 203841,----------使用代价                      "chosen": true-------选中                    }                  ] /* considered_access_paths */                } /* best_access_path */,                "condition_filtering_pct": 100,条件过滤率100%,指的是这里与上一个表进行行过滤的行数                "rows_for_plan": 978662,------执行计划的扫描行数978662                "cost_for_plan": 203841,-------执行计划的cost203841                "chosen": true---------选中              }            ] /* considered_execution_plans */          },                              {#检查带常量表的条件            "condition_on_constant_tables": "('00001111' = '00001111')",            "condition_value": true          },                              {   #将常量条件作用到表,这里主要是将d表的中的deptid条件作用到s表的deptid            "attaching_conditions_to_tables": {              "original_condition": "('00001111' = '00001111')",              "attached_conditions_computation": [              ] /* attached_conditions_computation */,              "attached_conditions_summary": [                {                  "table": "`ppp`.`shop` `s`",                  "attached": "(is_not_null_compl(s), ('00001111' = convert(`ppp`.`s`.`Deptid` using utf8mb4)), true)"                }              ] /* attached_conditions_summary */            } /* attaching_conditions_to_tables */          },                              {            "refine_plan": [              {                "table": "`ppp`.`shop` `s`"              }            ] /* refine_plan */          }        ] /* steps */      } /* join_optimization */    },        {      "join_execution": {        "select#": 1,        "steps": [        ] /* steps */      } /* join_execution */    }      ] /* steps */}MISSING_BYTES_BEYOND_MAX_MEM_SIZE: 0          INSUFFICIENT_PRIVILEGES: 01 row in set (0.00 sec)

以上优化器的主要步骤:

1.join_preparation :准备阶段,包查询语句转换,转换成嵌套循环语句等

expanded_query

transformations_to_nested_joins

2.join_optimization :优化阶段,包括以下主要阶段

condition_processing :处理where条件部分,主要包括等式处理、常量处理、多余条件处理

table_dependencies :表依赖检查

ref_optimizer_key_uses :评估可用的索引

rows_estimation :评估访问单表的方式,及扫描的行数与代价

considered_execution_plans :评估最终可使用的执行计划

condition_on_constant_tables :检查带常量表的条件

attaching_conditions_to_tables :将常量条件作用到表

refine_plan 改进计划,不理解

3.join_execution :执行阶段

通过以上可以看错,当优化器一开始对优化器进行评估时就直接选择了全表扫描的方式,即是说此时优化器直接忽视了s表已有的索引IND_SHOP_DEPTID。

我们将以下的d.DEPTID = '00001111' 换成s.DEPTID = '00001111',发现其可以选择了索引,此时s表看起来做了驱动表。

SELECT * FROM SSS.DEPARTMENT d LEFT JOIN ppp.shop s ON d.DEPTID = s.DEPTID WHERE s.DEPTID = '00001111';root@SSS 04:28:39>explain  SELECT * FROM SSS.DEPARTMENT d LEFT JOIN ppp.shop s ON d.DEPTID = s.DEPTID WHERE s.DEPTID = '00001111';+----+-------------+-------+------------+--------+----------------------------+-----------------+---------+-------+------+----------+-------------+| id | select_type | table | partitions | type   | possible_keys              | key             | key_len | ref   | rows | filtered | Extra       |+----+-------------+-------+------------+--------+----------------------------+-----------------+---------+-------+------+----------+-------------+|  1 | SIMPLE      | s     | NULL       | ref    | IND_SHOP_DEPTID            | IND_SHOP_DEPTID | 99      | const |    1 |   100.00 | NULL        ||  1 | SIMPLE      | d     | NULL       | eq_ref | PRIMARY,INDEX_DEPARTMENT_5 | PRIMARY         | 130     | func  |    1 |   100.00 | Using where |+----+-------------+-------+------------+--------+----------------------------+-----------------+---------+-------+------+----------+-------------+2 rows in set, 1 warning (0.00 sec)

追踪优化器过程:

1.在ref_optimizer_key_uses 过程找到s表可以通过"'00001111'"走索引,并且通过"Deptid"等值访问

2.在rows_estimation过程中s表选择IND_SHOP_DEPTID的cost最低。

3.在considered_execution_plans过程选择IND_SHOP_DEPTID的访问路径,并访问方式是ref。

  {            "ref_optimizer_key_uses": [              {                "table": "`SSS`.`department` `d`",                "field": "Deptid",                "equals": "convert(`ppp`.`s`.`Deptid` using utf8mb4)",                "null_rejecting": false              },              {                "table": "`SSS`.`department` `d`",                "field": "Deptid",                "equals": "convert(`ppp`.`s`.`Deptid` using utf8mb4)",                "null_rejecting": false              },              {                "table": "`ppp`.`shop` `s`",                "field": "Deptid",                "equals": "'00001111'",                "null_rejecting": false              }            ] /* ref_optimizer_key_uses */          },          {            "rows_estimation": [              {                "table": "`SSS`.`department` `d`",                "table_scan": {                  "rows": 911858,                  "cost": 7212                } /* table_scan */              },              {                "table": "`ppp`.`shop` `s`",                "range_analysis": {                  "table_scan": {                    "rows": 959814,                    "cost": 200074                  } /* table_scan */,                  "potential_range_indexes": [                    {                      "index": "PRIMARY",                      "usable": false,                      "cause": "not_applicable"                    },                    {                      "index": "IND_SHOP_DEPTID",                      "usable": true,                      "key_parts": [                        "Deptid",                        "Shopid"                      ] /* key_parts */                    },                    {                      "index": "IND_SHOP_DOMAIN",                      "usable": false,                      "cause": "not_applicable"                    }                  ] /* potential_range_indexes */,                  "setup_range_conditions": [                  ] /* setup_range_conditions */,                  "group_index_range": {                    "chosen": false,                    "cause": "not_single_table"                  } /* group_index_range */,                  "analyzing_range_alternatives": {                    "range_scan_alternatives": [                      {                        "index": "IND_SHOP_DEPTID",                        "ranges": [                          "00001111 <= Deptid <= 00001111"                        ] /* ranges */,                        "index_dives_for_eq_ranges": true,                        "rowid_ordered": true,                        "using_mrr": false,                        "index_only": false,                        "rows": 1,                        "cost": 2.21,                        "chosen": true                      }                    ] /* range_scan_alternatives */,                    "analyzing_roworder_intersect": {                      "usable": false,                      "cause": "too_few_roworder_scans"                    } /* analyzing_roworder_intersect */                  } /* analyzing_range_alternatives */,                  "chosen_range_access_summary": {                    "range_access_plan": {                      "type": "range_scan",                      "index": "IND_SHOP_DEPTID",                      "rows": 1,                      "ranges": [                        "00001111 <= Deptid <= 00001111"                      ] /* ranges */                    } /* range_access_plan */,                    "rows_for_plan": 1,                    "cost_for_plan": 2.21,                    "chosen": true                  } /* chosen_range_access_summary */                } /* range_analysis */              }            ] /* rows_estimation */          },          {            "considered_execution_plans": [              {                "plan_prefix": [                ] /* plan_prefix */,                "table": "`ppp`.`shop` `s`",                "best_access_path": {                  "considered_access_paths": [                    {                      "access_type": "ref",                      "index": "IND_SHOP_DEPTID",                      "rows": 1,                      "cost": 1.2,                      "chosen": true                    },                    {                      "access_type": "range",                      "range_details": {                        "used_index": "IND_SHOP_DEPTID"                      } /* range_details */,                      "chosen": false,                      "cause": "heuristic_index_cheaper"                    }                  ] /* considered_access_paths */                } /* best_access_path */,                "condition_filtering_pct": 100,                "rows_for_plan": 1,                "cost_for_plan": 1.2,                "rest_of_plan": [                  {                    "plan_prefix": [                      "`ppp`.`shop` `s`"                    ] /* plan_prefix */,                    "table": "`SSS`.`department` `d`",                    "best_access_path": {                      "considered_access_paths": [                        {                          "access_type": "eq_ref",                          "index": "PRIMARY",                          "rows": 1,                          "cost": 1.2,                          "chosen": true,                          "cause": "clustered_pk_chosen_by_heuristics"                        },                        {                          "access_type": "scan",                          "cost": 189584,                          "rows": 911858,                          "chosen": false,                          "cause": "cost"                        }                      ] /* considered_access_paths */                    } /* best_access_path */,                    "added_to_eq_ref_extension": true,                    "condition_filtering_pct": 100,                    "rows_for_plan": 1,                    "cost_for_plan": 2.4,                    "chosen": true                  }                ] /* rest_of_plan */              }            ] /* considered_execution_plans */

到此,相信大家对"mysql优化器追踪分析"有了更深的了解,不妨来实际操作一番吧!这里是网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!

0