千家信息网

怎么用python下的OpenCV实现图像和文字分离

发表于:2025-01-17 作者:千家信息网编辑
千家信息网最后更新 2025年01月17日,本篇内容介绍了"怎么用python下的OpenCV实现图像和文字分离"的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,
千家信息网最后更新 2025年01月17日怎么用python下的OpenCV实现图像和文字分离

本篇内容介绍了"怎么用python下的OpenCV实现图像和文字分离"的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!

本文实例为大家分享了基于OpenCV实现图像分割的具体代码,供大家参考,具体内容如下

1、图像阈值化

源代码:

#include "opencv2/highgui/highgui.hpp"#include "opencv2/imgproc/imgproc.hpp"#include using namespace std;using namespace cv;int thresholds=50;int model=2;Mat image,srcimage;void track(int ,void *){    Mat result;    threshold(srcimage,result,thresholds,255,CV_THRESH_BINARY);    //imshow("原图",result); if(model==0) {  threshold(srcimage,result,thresholds,255,CV_THRESH_BINARY);  imshow("分割",result); } if(model==1) {  threshold(srcimage,result,thresholds,255,THRESH_BINARY_INV);  imshow("分割",result);  } if(model==2) {  threshold(srcimage,result,thresholds,255,THRESH_TRUNC);  imshow("分割",result); } if(model==3) {  threshold(srcimage,result,thresholds,255,THRESH_TOZERO);  imshow("分割",result); } if(model==4) {  threshold(srcimage,result,thresholds,255,THRESH_TOZERO_INV);  imshow("分割",result); }}int main(){    image=imread("2.2.tif");    if(!image.data)    {        return 0;    }    cvtColor(image,srcimage,CV_BGR2GRAY);    namedWindow("分割",WINDOW_AUTOSIZE);    cv::createTrackbar("阈a值:","分割",&thresholds,255,track); cv::createTrackbar("模式:","分割",&model,4,track);    track(thresholds,0); track(model,0);    waitKey(0);    return 0;}

实现结果:

2、阈值处理

//阈值处理#include "opencv2/core/core.hpp"#include "opencv2/highgui/highgui.hpp"#include "opencv2/imgproc/imgproc.hpp"        using namespace cv;    using namespace std;        int main()    {     printf("键盘按键ESC--退出程序");     Mat g_srcImage = imread("1.tif",0);     if(!g_srcImage.data)     {      printf("读取图片失败");     }     imshow("原始图",g_srcImage);         //大津法阈值分割显示     /*大津法,简称OTSU.它是按图像的灰度特性,将图像分成背景     和目标2部分。背景和目标之间的类间方差越大,说明构成图像     的2部分的差别越大,当部分目标错分为背景或部分背景错分为     目标都会导致2部分差别变小。*/     Mat OtsuImage;     threshold(g_srcImage,OtsuImage,0,255,THRESH_OTSU);//0不起作用,可为任意阈值     imshow("OtsuImage",OtsuImage);         //自适应分割并显示     Mat AdaptImage;     //THRESH_BINARY_INV:参数二值化取反     adaptiveThreshold(g_srcImage,AdaptImage,255,0,THRESH_BINARY_INV,7,8);     imshow("AdaptImage",AdaptImage);         while(1)     {      int key;      key = waitKey(20);      if((char)key == 27)      { break; }     }    }

效果图:

3、拉普拉斯检测

//Laplacian检测#include "opencv2/core/core.hpp"#include "opencv2/highgui/highgui.hpp"#include "opencv2/imgproc/imgproc.hpp"using namespace cv;using namespace std;/*,在只关心边缘的位置而不考虑其周围的象素灰度差值时比较合适。Laplace 算子对孤立象素的响应要比对边缘或线的响应要更强烈,因此只适用于无噪声图象。存在噪声情况下,使用 Laplacian 算子检测边缘之前需要先进行低通滤波。*/int main(){ Mat src,src_gray,dst,abs_dst; src = imread("1.jpg"); imshow("原始图像",src); //高斯滤波 GaussianBlur(src,src,Size(3,3),0,0,BORDER_DEFAULT); //转化为灰度图,输入只能为单通道 cvtColor(src,src_gray,CV_BGR2GRAY); Laplacian(src_gray,dst,CV_16S,3,1,0,BORDER_DEFAULT); convertScaleAbs(dst,abs_dst); imshow("效果图Laplace变换",abs_dst); waitKey(); return 0;}

效果图:

4、canny算法的边缘检测

源代码

#include "opencv2/core/core.hpp"#include "opencv2/highgui/highgui.hpp"#include "opencv2/imgproc/imgproc.hpp"using namespace cv;using namespace std;/*如果某一像素位置的幅值超过高阈值,该像素被保留为边缘像素。如果某一像素位置的幅值小于低阈值,该像素被排除。如果某一像素位置的幅值在两个阈值之间,该像素仅仅在连接到一个高于高阈值的像素时被保留。 */int main(){ Mat picture2=imread("1.jpg"); Mat new_picture2; Mat picture2_1=picture2.clone(); Mat gray_picture2 , edge , new_edge; imshow("【原始图】Canny边缘检测" , picture2); Canny(picture2_1 , new_picture2 ,150 , 100 ,3  ); imshow("【效果图】Canny边缘检测", new_picture2 ); Mat dstImage,grayImage; //dstImage与srcImage同大小类型 dstImage.create(picture2_1.size() , picture2_1.type()); cvtColor(picture2_1,gray_picture2,CV_BGR2GRAY);//转化为灰度图 blur(gray_picture2 , edge , Size(3,3));//用3x3的内核降噪 Canny(edge,edge,3,9,3); dstImage = Scalar::all(0);//将dst内所有元素设置为0 //使用canny算子的边缘图edge作为掩码,将原图拷贝到dst中 picture2_1.copyTo(dstImage,edge); imshow("效果图Canny边缘检测2",dstImage); waitKey();}

效果图:

5、图像的分水岭算法

源代码:

#include "opencv2/core/core.hpp"#include "opencv2/highgui/highgui.hpp"#include "opencv2/imgproc/imgproc.hpp"#include  using namespace cv;using namespace std;#define WINDOW_NAME1 "显示/操作窗口"#define WINDOW_NAME2 "分水岭算法效果图"Mat g_maskImage,g_srcImage;Point prevPt(-1,-1);static void ShowHelpText();static void on_Mouse(int event,int x,int y,int flags,void*);//输出一些帮助信息static void ShowHelpText(){ printf("当前使用的版本为:"CV_VERSION); printf("\n"); printf("分水岭算法---点中图片进行鼠标或按键操作\n"); printf("请先用鼠标在图片窗口中标记出大致的区域,\n然后再按键【1】或者【space】启动算法"); printf("\n按键操作说明:\n"  "键盘按键【1】或者【space】--运行的分水岭分割算法\n"  "键盘按键【2】--回复原始图片\n"  "键盘按键【ESC】--退出程序\n");}static void on_Mouse(int event,int x,int y,int flags,void*){ if(x<0||x>=g_srcImage.cols||y<0||y>=g_srcImage.rows)  return; if(event == CV_EVENT_LBUTTONUP||!(flags & CV_EVENT_FLAG_LBUTTON))  prevPt = Point(-1,-1); else if(event == CV_EVENT_LBUTTONDOWN)  prevPt= Point(x,y); else if(event == CV_EVENT_MOUSEMOVE && (flags & CV_EVENT_FLAG_LBUTTON)) {  Point pt(x,y);  if(prevPt.x<0)   prevPt = pt;  line(g_maskImage,prevPt,pt,Scalar::all(255),5,8,0);  line(g_srcImage,prevPt,pt,Scalar::all(255),5,8,0);  prevPt = pt;  imshow(WINDOW_NAME1,g_srcImage); }}int main(int argc,char**  argv){ system("color A5"); ShowHelpText(); g_srcImage = imread("1.jpg",1); imshow(WINDOW_NAME1,g_srcImage); Mat srcImage,grayImage; g_srcImage.copyTo(srcImage); cvtColor(g_srcImage,g_maskImage,CV_BGR2GRAY); cvtColor(g_maskImage,grayImage,CV_GRAY2BGR);//灰度图转BGR3通道,但每通道的值都是原先单通道的值,所以也是显示灰色的 g_maskImage = Scalar::all(0);//黑 setMouseCallback(WINDOW_NAME1,on_Mouse,0); while(1) {  int c = waitKey(0);  if((char)c == 27)   break;  if((char)c == '2')  {   g_maskImage = Scalar::all(0);//黑   srcImage.copyTo(g_srcImage);   imshow("image",g_srcImage);  }  if((char)c == '1'||(char)c == ' ')  {   int i,j,compCount = 0;   vector> contours;//定义轮廓   vector hierarchy;//定义轮廓的层次   findContours(g_maskImage,contours,hierarchy,RETR_CCOMP,CHAIN_APPROX_SIMPLE);   if(contours.empty())    continue;   Mat maskImage(g_maskImage.size(),CV_32S);   maskImage = Scalar::all(0);   for(int index = 0;index >= 0;index = hierarchy[index][0],compCount++)    drawContours(maskImage,contours,index,Scalar::all(compCount+1),-1,8,hierarchy,INT_MAX);   if(compCount == 0)    continue;   vector colorTab;   for(i=0;i(i,j);     if(index == -1)      watershedImage.at(i,j) = Vec3b(255,255,255);     else if(index<=0||index>compCount)      watershedImage.at(i,j) = Vec3b(0,0,0);     else      watershedImage.at(i,j) = colorTab[index-1];     }    //混合灰度图和分水岭效果图并显示最终的窗口    watershedImage = watershedImage*0.5+grayImage*0.5;    imshow(WINDOW_NAME2,watershedImage);          }  } waitKey(); return 0;}

效果图:

"怎么用python下的OpenCV实现图像和文字分离"的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注网站,小编将为大家输出更多高质量的实用文章!

0