千家信息网

C语言如何解决青蛙跳台阶问题

发表于:2025-01-20 作者:千家信息网编辑
千家信息网最后更新 2025年01月20日,小编给大家分享一下C语言如何解决青蛙跳台阶问题,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!1. 基础问题题目描述一只青蛙
千家信息网最后更新 2025年01月20日C语言如何解决青蛙跳台阶问题

小编给大家分享一下C语言如何解决青蛙跳台阶问题,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!

    1. 基础问题

    题目描述

    一只青蛙一次可以跳上 1 级台阶,也可以跳上 2 级。求该青蛙跳上一个 n 级的台阶总共有多少种跳法。

    诺,就像下面这样

    解题思路

    其实我一看到这道题,我也是懵的,不知道从哪里着手分析,那我们就从最简单的情况开始分析。

    假如 n = 1,一共有一级台阶,显然就只有一种跳法

    一次跳1阶;

    假如 n = 2,一共有两级台阶,共有两种跳法

    跳1阶,再跳1阶

    跳2阶

    假设n = 3,共有三种跳法。

    跳1阶,跳1阶,再跳1阶

    跳1阶,再跳2阶

    跳2阶, 再跳1阶

    (注:此过程图是我从网上找的,实在是难得画啦)

    通过上面的分析,我们可以这样思考问题

    前往楼梯顶部的最后一步,要么跳1阶,要么跳2阶;

    先假设f(n)为 n 级台阶的总跳法数;

    那么第一次如果选择跳一级的话,剩下的 n-1 级台阶的跳法数就为f(n−1)。

    如果第一次跳两级的话,剩下的 n-2 级台阶的跳法就是f(n−2);

    现在青蛙一次只能跳一级或两级,所以我们可以推出以下公式:

    咦,这玩意儿不就是我们 斐波那契数 吗?

    只不过有一点不同的是,斐波那契数列一般是以1,1,2,3,5,8,13……开始的;

    而我们这是以1,2,3,5,8,13……开始的,少了最前面的一个1。

    代码实现

    上面说到这个过程有点类似于斐波那契数,但又不完全是,所以我们先看主代码部分

    #include int jump(int n){    if (n < 3)    {        //假设n的范围是[0, 3]        return n;    }    else    {        //n>3的时候        return jump(n - 1) + jump(n - 2);    }}int main(){    int num = 0;    printf("请输入一个台阶数:> ");    scanf("%d", &num);    int ret = jump(num);        printf("小青蛙有 %d种 跳法\n", ret);    return 0;}

    运行结果

    但是,我们来看一下计算的过程

    要计算f(6),就需要先计算出子问题f(5)和f(4)

    然后要计算f(5),又要先算出子问题f(4)和f(3),以此类推。

    一直到f(2)和f(1),递归树才终止。

    因此,青蛙跳阶,递归解法的时间复杂度 等于O(1) * O(2ⁿ)=O(2ⁿ)

    你仔细观察这颗递归树,你会发现存在「大量重复计算」;

    比如f(4)被计算了两次,f(3)被重复计算了3次…所以这个递归算法低效的原因,就是存在大量的重复计算!

    所以我们可以对代码进行优化

    递归升级

    在递归法的基础上,新建一个长度为n的数组,用于在递归时存储f(0)至f(n) 的数字值,重复遇到某数字时则直接从数组取用,避免了重复的递归计算。

    所以我们设置一个数组,用于存放第一次计算某一个n的jump(n)。

    当每一次要计算一个jump(n)的时候,就先查看数组中以n为下标的地方是否有值,有的话就可以不调用jump(n),而直接从数组中取得结果值,否则再计算jump(n)。

    代码实现

    #include long int f[1000]={0};int jump(int n){    //当只有一阶台阶的时候,只有一种上台阶的方式。        //当有2阶台阶的时候,有2种上台阶的方式,一种是一次上一阶,还有一种是一次上2个台阶。        //现在设有n阶台阶,如果n>2,那种应该有(先跳一阶)+(先跳2阶)的方式        //如果先跳一阶,那么就有jump(n-1)中方式。如果先跳2阶,那么就有jump(n-2)中方式。        //因此可以知道共有jump(n-1) + jump(n-2)种方式。    if(n==1)    {        f[1]=1;        return f[1];    }    if(n==0)    {        f[0]=1;        return f[0];    }    if(n==2)    {        f[2]=2;        return f[2];    }    else    {        if(f[n-1]!=0)        {            if(f[n-2]!=0)            {                return (f[n-1]+f[n-2]);            }            else            {                f[n-2]=jump(n-2);                return (f[n-1]+f[n-2]);            }        }        else        {            if(f[n-2]!=0)            {                f[n-1]=jump(n-1);                return (f[n-1]+f[n-2]);            }            else            {                f[n-1]=jump(n-1);                f[n-2]=jump(n-2);                return (f[n-1]+f[n-2]);            }        }    }}int main(){    int num = 0;    printf("请输入一个台阶数:> ");    scanf("%d", &num);    int ret = jump(num);    printf("小青蛙有 %d种 跳法\n", ret);    return 0;}

    运行结果

    动态规划解法

    很快我又发现,不必把所有的记录都记起来;

    假设我有3阶楼梯,我只需要知道跳2阶和跳1阶的方法数是多少就可以算出跳3阶的方法数;

    因此每次只需要保留n−1阶和n−2阶的方法数。

    代码实现

    #include int jump(int n){    //n=0、1、2的时候,直接返回n即可    if (n < 3)    {        return n;    }        //第一个数为1    int one = 1;    //第二个数为2    int two = 2;    //用于存放前两个数之和    int sum = 0;     while (n > 2)    {        sum = one + two;        one = two;        two = sum;        n--;    }    return sum;}int main(){    int num = 0;    printf("请输入一个台阶数:> ");    scanf("%d", &num);    int ret = jump(num);    printf("小青蛙有 %d种 跳法\n", ret);    return 0;}

    运行结果

    2. 问题升级

    题目描述

    一只青蛙一次可以跳上一级台阶,也可以跳上二级台阶……,也可以跳n级,求该青蛙跳上一个n级的台阶总共需要多少种跳法。

    解题思路

    一只青蛙要想跳到n级台阶,可以从一级,二级……,也就是说可以从任何一级跳到n级

    当台阶为1级时,f(1)=1;

    当台阶为2级时,f(2)=1+1=2;

    当台阶为3级时,f(3)=f(1)+f(2)+1=4;

    当台阶为4级时,f(4)=f(1)+f(2)+f(3)+1=8;

    当台阶为5级时,f(5)=f(1)+f(2)+f(3)+f(4)+1=16;

    所以递推公式我们很容易就能想到:f(n)=f(n−1)+f(n−2)+……+f(2)+f(1)+f(0)

    最后这个f(0)是可以去掉的,因为0级就相当于没跳,所以f(0)=0

    然后我们把f(0)去掉再转换一下:f(n−1)=f(n−2)+f(n−3)+……+f(2)+f(1);

    推导过程

    我们列两个等式:

    ①f(n)=f(n−1)+f(n−2)+f(n−3)+…+f(2)+f(1)

    ②f(n−1)=f(n−2)+f(n−3)+…+f(2)+f(1)

    由①-②得,f(n)=2f(n−1)

    代码实现

    递归方法

    代码示例

    int jump(int n){    if (n == 1)    {        return 1;    }    else    {        return 2 * jump(n - 1);    }}int main(){    int num = 0;    printf("请输入一个台阶数:> ");    scanf("%d", &num);    int ret = jump(num);    printf("小青蛙有 %d种 跳法\n", ret);    return 0;}

    运行结果

    非递归方法

    当然这里也可以用非递归的方式来实现

    那么非递归怎么去思考呢?

    可以这样理解:

    然后使用用函数pow(2,n -1),需要加头文件

    但是我们这里可以不用库函数来实现,给大家介绍一种神奇的运算

    代码示例

    int jump(int n){    if (n == 1)    {        return 1;    }    else    {        return 1 << (n-1);    }}int main(){    int num = 0;    printf("请输入一个台阶数:> ");    scanf("%d", &num);    int ret = jump(num);    printf("小青蛙有 %d种 跳法\n", ret);    return 0;}

    运行结果

    我这里选择用<<左移操作符来计算

    以上是"C语言如何解决青蛙跳台阶问题"这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注行业资讯频道!

    0