Hadoop HBase
一、概述:
1、定义:HBase是Google Bigtable的开源山寨版本。是建立的HDFS之上,提供高可靠性、高性能、列存储、可伸缩、实时、随机读写的数据库系统。
它介于nosql和RDBMS之间,仅能通过主键(row key)和主键的range来检索数据,仅支持单行事务(可通过hive支持来实现多表join等复杂操作)。主要用来存储非结构化和半结构化的松散数据。与hadoop一样,Hbase目标主要依靠横向扩展,通过不断增加廉价的商用服务器,来增加计算和存储能力。
2、特点:
HBase中的表一般有这样的特点:
(1) 、大:一个表可以有上亿行,上百万列
(2)、 面向列:面向列(族)的存储和权限控制,列(族)独立检索。
(3)、稀疏:对于为空(null)的列,并不占用存储空间,因此,表可以设计的非常稀疏。
二、hbase命令行:
1、进入hbase命令行 ./hbase shell
2、显示hbase中的表 list
3、创建user表,包含info、data两个列族
create 'user', {NAME => 'info', VERSIONS => '3'},{NAME => 'data'}
4、向user表中插入信息:
(1)、插入row key为rk0001,列族info中添加name列标示符,值为zhangsan
put 'user', 'rk0001', 'info:name', 'zhangsan'
(2)、插入row key为rk0001,列族info中添加gender列标示符,值为female
put 'user', 'rk0001', 'info:gender', 'female'
(3)、插入row key为rk0001,列族info中添加age列标示符,值为20
put 'user', 'rk0001', 'info:age', 20
(4)、插入row key为rk0001,列族data中添加pic列标示符,值为picture
put 'user', 'rk0001', 'data:pic', 'picture'
5、get获取数据:
(1)、获取user表中row key为rk0001的所有信息
get 'user', 'rk0001'
(2)、获取user表中row key为rk0001,info列族的所有信息
get 'user', 'rk0001', 'info'
(3)、获取user表中row key为rk0001,info列族的name、age列标示符的信息
get 'user', 'rk0001', 'info:name', 'info:age'
(4)、获取user表中row key为rk0001,info、data列族的信息
get 'user', 'rk0001', 'info', 'data'
get 'user', 'rk0001', {COLUMN => ['info', 'data']}
(5)、获取user表中row key为rk0001,列族为info,版本号最新5个的信息
get 'user', 'rk0001', {COLUMN => 'info:name', VERSIONS => 5}
6、scan获取数据:
(1)、查询user表中的所有信息
scan 'user'
(2)、查询user表中row key以rk字符开头的
scan 'user',{FILTER=>"PrefixFilter('rk')"}
(3)、查询user表中列族为info,rk范围是[rk0001, rk0003)的数据
scan 'people', {COLUMNS => 'info', STARTROW => 'rk0001', ENDROW => 'rk0003'}
(4)、查询user表中列族为info和data且列标示符中含有a字符的信息
scan 'user', {COLUMNS => ['info', 'data'], FILTER => "(QualifierFilter(=,'substring:a'))"}
(5)、查询user表中指定范围的数据
scan 'user', {TIMERANGE => [1392368783980, 1392380169184]}
7、删除数据
(1)、删除user表row key为rk0001,列标示符为info:name的数据
delete 'user', 'rk0001', 'info:name'
(2)、删除user表row key为rk0001,列标示符为info:name,timestamp为1392383705316的数据
delete 'user', 'rk0001', 'info:name', 1392383705316
8、删除表
disable 'user'
drop 'user'
三、HBase的java api:
import java.util.List;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.Cell;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.HColumnDescriptor;
import org.apache.hadoop.hbase.HTableDescriptor;
import org.apache.hadoop.hbase.KeyValue;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.Delete;
import org.apache.hadoop.hbase.client.Get;
import org.apache.hadoop.hbase.client.HBaseAdmin;
import org.apache.hadoop.hbase.client.HTable;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.client.Result;
import org.apache.hadoop.hbase.client.ResultScanner;
import org.apache.hadoop.hbase.client.Scan;
import org.apache.hadoop.hbase.filter.BinaryComparator;
import org.apache.hadoop.hbase.filter.BinaryPrefixComparator;
import org.apache.hadoop.hbase.filter.ByteArrayComparable;
import org.apache.hadoop.hbase.filter.ColumnPrefixFilter;
import org.apache.hadoop.hbase.filter.CompareFilter.CompareOp;
import org.apache.hadoop.hbase.filter.FamilyFilter;
import org.apache.hadoop.hbase.filter.Filter;
import org.apache.hadoop.hbase.filter.MultipleColumnPrefixFilter;
import org.apache.hadoop.hbase.filter.PrefixFilter;
import org.apache.hadoop.hbase.filter.QualifierFilter;
import org.apache.hadoop.hbase.filter.RegexStringComparator;
import org.apache.hadoop.hbase.filter.RowFilter;
import org.apache.hadoop.hbase.filter.SingleColumnValueFilter;
import org.apache.hadoop.hbase.filter.SubstringComparator;
import org.apache.hadoop.hbase.master.TableNamespaceManager;
import org.apache.hadoop.hbase.util.Bytes;
import org.junit.Before;
import org.junit.Test;
public class HbaseDemo {
private Configuration conf = null;
@Before
public void init(){
conf = HBaseConfiguration.create();
conf.set("hbase.zookeeper.quorum", "node1,node2,node3");
}
@Test
public void testDrop() throws Exception{
HBaseAdmin admin = new HBaseAdmin(conf);
admin.disableTable("account");
admin.deleteTable("account");
admin.close();
}
@Test
public void testPut() throws Exception{
HTable table = new HTable(conf, "person_info");
Put p = new Put(Bytes.toBytes("person_rk_bj_zhang_000002"));
p.add("base_info".getBytes(), "name".getBytes(), "zhangwuji".getBytes());
table.put(p);
table.close();
}
@Test
public void testGet() throws Exception{
HTable table = new HTable(conf, "person_info");
Get get = new Get(Bytes.toBytes("person_rk_bj_zhang_000001"));
get.setMaxVersions(5);
Result result = table.get(get);
List
//result.getValue(family, qualifier); 可以从result中直接取出一个特定的value
//遍历出result中所有的键值对
for(KeyValue kv : result.list()){
String family = new String(kv.getFamily());
System.out.println(family);
String qualifier = new String(kv.getQualifier());
System.out.println(qualifier);
System.out.println(new String(kv.getValue()));
}
table.close();
}
/**
* 多种过滤条件的使用方法
* @throws Exception
*/
@Test
public void testScan() throws Exception{
HTable table = new HTable(conf, "person_info".getBytes());
Scan scan = new Scan(Bytes.toBytes("person_rk_bj_zhang_000001"), Bytes.toBytes("person_rk_bj_zhang_000002"));
//前缀过滤器----针对行键
Filter filter = new PrefixFilter(Bytes.toBytes("rk"));
//行过滤器
ByteArrayComparable rowComparator = new BinaryComparator(Bytes.toBytes("person_rk_bj_zhang_000001"));
RowFilter rf = new RowFilter(CompareOp.LESS_OR_EQUAL, rowComparator);
/**
* 假设rowkey格式为:创建日期_发布日期_ID_TITLE
* 目标:查找 发布日期 为 2014-12-21 的数据
*/
rf = new RowFilter(CompareOp.EQUAL , new SubstringComparator("_2014-12-21_"));
//单值过滤器 1 完整匹配字节数组
new SingleColumnValueFilter("base_info".getBytes(), "name".getBytes(), CompareOp.EQUAL, "zhangsan".getBytes());
//单值过滤器2 匹配正则表达式
ByteArrayComparable comparator = new RegexStringComparator("zhang.");
new SingleColumnValueFilter("info".getBytes(), "NAME".getBytes(), CompareOp.EQUAL, comparator);
//单值过滤器2 匹配是否包含子串,大小写不敏感
comparator = new SubstringComparator("wu");
new SingleColumnValueFilter("info".getBytes(), "NAME".getBytes(), CompareOp.EQUAL, comparator);
//键值对元数据过滤-----family过滤----字节数组完整匹配
FamilyFilter ff = new FamilyFilter(
CompareOp.EQUAL ,
new BinaryComparator(Bytes.toBytes("base_info")) //表中不存在inf列族,过滤结果为空
);
//键值对元数据过滤-----family过滤----字节数组前缀匹配
ff = new FamilyFilter(
CompareOp.EQUAL ,
new BinaryPrefixComparator(Bytes.toBytes("inf")) //表中存在以inf打头的列族info,过滤结果为该列族所有行
);
//键值对元数据过滤-----qualifier过滤----字节数组完整匹配
filter = new QualifierFilter(
CompareOp.EQUAL ,
new BinaryComparator(Bytes.toBytes("na")) //表中不存在na列,过滤结果为空
);
filter = new QualifierFilter(
CompareOp.EQUAL ,
new BinaryPrefixComparator(Bytes.toBytes("na")) //表中存在以na打头的列name,过滤结果为所有行的该列数据
);
//基于列名(即Qualifier)前缀过滤数据的ColumnPrefixFilter
filter = new ColumnPrefixFilter("na".getBytes());
//基于列名(即Qualifier)多个前缀过滤数据的MultipleColumnPrefixFilter
byte[][] prefixes = new byte[][] {Bytes.toBytes("na"), Bytes.toBytes("me")};
filter = new MultipleColumnPrefixFilter(prefixes);
//为查询设置过滤条件
scan.setFilter(filter);
scan.addFamily(Bytes.toBytes("base_info"));
ResultScanner scanner = table.getScanner(scan);
for(Result r : scanner){
/**
for(KeyValue kv : r.list()){
String family = new String(kv.getFamily());
System.out.println(family);
String qualifier = new String(kv.getQualifier());
System.out.println(qualifier);
System.out.println(new String(kv.getValue()));
}
*/
//直接从result中取到某个特定的value
byte[] value = r.getValue(Bytes.toBytes("base_info"), Bytes.toBytes("name"));
System.out.println(new String(value));
}
table.close();
}
@Test
public void testDel() throws Exception{
HTable table = new HTable(conf, "user");
Delete del = new Delete(Bytes.toBytes("rk0001"));
del.deleteColumn(Bytes.toBytes("data"), Bytes.toBytes("pic"));
table.delete(del);
table.close();
}
public static void main(String[] args) throws Exception {
Configuration conf = HBaseConfiguration.create();
//conf.set("hbase.zookeeper.quorum", "weekend05:2181,weekend06:2181,weekend07:2181");
HBaseAdmin admin = new HBaseAdmin(conf);
TableName tableName = TableName.valueOf("person_info");
HTableDescriptor td = new HTableDescriptor(tableName);
HColumnDescriptor cd = new HColumnDescriptor("base_info");
cd.setMaxVersions(10);
td.addFamily(cd);
admin.createTable(td);
admin.close();
}
}