千家信息网

Pandas数据离散化的示例分析

发表于:2025-01-16 作者:千家信息网编辑
千家信息网最后更新 2025年01月16日,这篇文章主要为大家展示了"Pandas数据离散化的示例分析",内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下"Pandas数据离散化的示例分析"这篇文章吧。为什
千家信息网最后更新 2025年01月16日Pandas数据离散化的示例分析

这篇文章主要为大家展示了"Pandas数据离散化的示例分析",内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下"Pandas数据离散化的示例分析"这篇文章吧。

为什么要离散化

  • 连续属性离散化的目的是为了简化数据结构,数据离散化技术可以用来减少给定连续属性值的个数。离散化方法经常作为数据挖掘的工具

  • 扔掉一些信息,可以让模型更健壮,泛化能力更强

什么是数据的离散化

连续属性的离散化就是在连续属性的值域上,将值域划分为若干个离散的区间,最后用不同的符号或整数 值代表落在每个子区间中的属性值

分箱

案例

1.先读取股票的数据,筛选出p_change数据

data = pd.read_csv("./data/stock_day.csv")p_change= data['p_change']

2.将股票涨跌幅数据进行分组

使用的工具:

  • pd.qcut(data, bins)--等深分箱:

    • 对数据进行分组将数据分组 一般会与value_counts搭配使用,统计每组的个数

  • series.value_counts():统计分组次数

# 自行分组qcut = pd.qcut(p_change, 10)# 计算分到每个组数据个数qcut.value_counts()

自定义区间分组:

  • pd.cut(data, bins)--等宽分箱:

    • bins是整数-等宽

    • bins是列表--自定义分箱

# 自己指定分组区间bins = [-100, -7, -5, -3, 0, 3, 5, 7, 100]p_counts = pd.cut(p_change, bins)

以上是"Pandas数据离散化的示例分析"这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注行业资讯频道!

0