千家信息网

C语言堆怎么实现和堆排序是什么

发表于:2025-01-17 作者:千家信息网编辑
千家信息网最后更新 2025年01月17日,这篇文章主要介绍了C语言堆怎么实现和堆排序是什么的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇C语言堆怎么实现和堆排序是什么文章都会有所收获,下面我们一起来看看吧。一、本
千家信息网最后更新 2025年01月17日C语言堆怎么实现和堆排序是什么

这篇文章主要介绍了C语言堆怎么实现和堆排序是什么的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇C语言堆怎么实现和堆排序是什么文章都会有所收获,下面我们一起来看看吧。

    一、本章重点

    • 堆的介绍

    • 堆的接口实现

    • 堆排序

    二、堆

    2.1堆的介绍

    一般来说,堆在物理结构上是连续的数组结构,在逻辑结构上是一颗完全二叉树。

    但要满足

    • 每个父亲节点的值都得大于孩子节点的值,这样的堆称为大堆。

    • 每个父亲节点的值都得小于孩子节点的值,这样的堆称为小堆。

    那么以下就是一个小堆。

    百度百科:

    堆的定义如下:n个元素的序列{k1,k2,ki,…,kn}当且仅当满足下关系时,称之为堆。

    若将和此次序列对应的一维数组(即以一维数组作此序列的存储结构)看成是一个完全二叉树,则堆的含义表明,完全二叉树中所有非终端结点的值均不大于(或不小于)其左、右孩子结点的值。由此,若序列{k1,k2,…,kn}是堆,则堆顶元素(或完全二叉树的根)必为序列中n个元素的最小值(或最大值)。

    下面序列是堆的是( )。

    A.97,56,38,66,23,42,12 //不是大堆也不是小堆,即不是堆。

    B.23,86,48,3,35,39,42 //不是大堆也不是小堆,即不是堆。

    C.05,56,20,23,40,38,29 //不是大堆也不是小堆,即不是堆。

    D.05,23,16,68,94,72,71,73 //是小堆

    只有D是堆而且是小堆,因此答案选D。

    D的逻辑结构:

    父亲节点和孩子节点的数组下标有以下关系:

    • left_child=(parent+1)*2

    • right_child=(parent+2)*2

    • parent=(child-1)/2(这里的child左孩子和右孩子都适用)

    以上就不做证明了,不过我们可以验证一下,以上图D的逻辑结构为例,16的parent下标是2,72的下标是5,71的下标是6,满足left_child=(parent+1)*2、right_child=(parent+2)*2、parent=(child-1)/2。

    有序一定是堆,堆不一定有序。

    同时堆顶的数组是整个数组最大的数或者整个数组最小的数。

    2.2堆的接口实现

    第一件事我们就是要创建堆,实际就是创建一个数组,这里用动态数组。

    typedef int HPDataType;typedef struct Heap{        HPDataType* a;        size_t size;        size_t capacity;}HP;

    堆创建好之后,我们需要对它进行初始化。

    第一个接口:

    void HeapInit(HP* php);

    轻车熟路,将堆中的a置为NULL,size和capacity置为0。

    或者这里可以设置capacity不为0的初始值也是可以的。

    参考代码:

    void HeapInit(HP* php){        assert(php);        php->a = NULL;        php->size = php->capacity = 0;}

    我们对堆进行初始化之后,也要在最后销毁堆。

    第二个接口:

    void HeapDestroy(HP* php)

    销毁堆,即销毁一个动态数组

    参考代码:

    void HeapDestroy(HP* php){        assert(php);        free(php->a);        php->a = NULL;        php->size = php->capacity = 0;}

    现在我们可以考虑往堆中插入数据了,要求插入新元素之后还是堆。

    第三个接口:

    void HeapPush(HP* php, HPDataType x)

    堆没有要求在哪个位置插入新元素,可以在任意的位置插入新元素,但要保证插入新元素之后还是堆。

    由于数组在头部还是在中间位置的插入复杂度是O(N),并且插入后不一定是堆了。

    因此我们考虑的是直接在数组尾部插入新元素,然后用一个函数去调整数组的顺序使得它还是一个堆。

    那么核心代码就是这个调整算法。

    先来看这一个堆,插入新元素后该如何进行调整。

    我们在数组的最后插入22,原堆是一个小堆,此时我们需要从下往上去调整各个父亲节点,使得该堆还是一个小堆。

    换句话说:我们只需要调整下面有彩色的节点顺序。

    交换过程:如果孩子节点小于父亲节点,那么将它们交换,然后迭代。

    如果孩子节点大于父亲节点就跳出循环。

    迭代过程:将父亲节点的下标赋值给孩子节点的下标,然后重新计算父亲节点的下标,计算方法:parent=(child-1)/2。

    参考代码:

    void AdjustUp(HPDataType* a, size_t child){        size_t parent = (child - 1) / 2;        while (child > 0)        {        //如果孩子小于父亲,则交换                    if (a[child] < a[parent])                {                        Swap(&a[child], &a[parent]);                        child = parent;                        parent = (child - 1) / 2;                }        //孩子大于父亲,则结束调整                else                {                        break;                }        }}
    void HeapPush(HP* php, HPDataType x){        assert(php);    //动态数组,空间不够要扩容         if (php->size == php->capacity)        {                size_t newCapacity = php->capacity == 0 ? 4 : php->capacity * 2;                HPDataType* tmp = realloc(php->a, sizeof(HPDataType)* newCapacity);                if (tmp == NULL)                {                        printf("realloc failed\n");                        exit(-1);                }                 php->a = tmp;                php->capacity = newCapacity;        }    //尾插数据        php->a[php->size] = x;        ++php->size;         // 向上调整,控制保持是一个小堆        AdjustUp(php->a, php->size - 1);}

    上面是多个数据的插入,那么如果插入第一个数据,这个函数还能帮助我们把数据插入堆中吗?

    答案是肯定的。

    既然有Push数据到堆,自然有从堆中删除元素了。

    这里的删除不同于栈和队列的删除,这里指的是将堆顶的数据删除,删除之后堆还是一个堆。为什么只实现删堆顶的数据,因为简单实用,这个接口是为后面的堆排序做准备的。

    第四个接口:

    void HeapPop(HP* php)

    思路比较简单:将数组第一个元素删除,然后保持它还是一个小堆。

    怎么删除第一个数据呢?

    这里的考虑是将数组第一个元素和数组最后一个交换,交换之后尾删掉最后一个元素,达成删除第一个元素的效果,复杂度是O(N),这里可以提一下,这种头删的方式是改变了数组元素的相对顺序的。

    删除之后我们要做调整,使得堆还是小堆。

    那么怎么调整呢?

    以下是一个小堆

    头删之后

    如何调整它,使得它还是一个小堆?

    这里的思路是:向下调整算法,首先parent=73,然后选出它子节点最小的值,然后它们之间交换,交换之后,将子节点看作新的父亲节点,继续向下调整,直到父亲节点的左孩子不存在。

    参考代码:

    void AdjustDown(HPDataType* a, size_t size, size_t root){        size_t parent = root;        size_t child = parent * 2 + 1;        while (child < size)        {                // 1、选出左右孩子中小的那个                if (child + 1 < size && a[child+1] < a[child])                {                        ++child;                }                 // 2、如果孩子小于父亲,则交换,并继续往下调整                if (a[child] < a[parent])                {                        Swap(&a[child], &a[parent]);                        parent = child;                        child = parent * 2 + 1;                }                else                {                        break;                }        }}

    这里需要注意的是,为什么循环的结束条件不是右孩子不存在呢?

    因为右孩子不存在时,也可能要进行交换。

    比如:

    还需要注意的是左孩子存在右孩子不一定存在

    if (a[child+1] > a[child]){        ++child;}

    直接这样写a[child+1]可能会越界,因此要加上child + 1 < size,保证child + 1 <= size-1。

    参考代码:

    void HeapPop(HP* php){        assert(php);        assert(php->size > 0);    //将数组第一个元素和最后一个元素交换然后删除最后一个元素,达到头删的目的。        Swap(&php->a[0], &php->a[php->size - 1]);        --php->size;    //向下调整算法        AdjustDown(php->a, php->size, 0);}

    其他接口补充:

    由于比较简单,理解起来不费劲,因此这里直接给出。

    参考代码:

    bool HeapEmpty(HP* php)//判断堆是否为空{        assert(php);         return php->size == 0;} size_t HeapSize(HP* php)//堆的元素个数{        assert(php);         return php->size;} HPDataType HeapTop(HP* php)//取堆顶数据{        assert(php);        assert(php->size > 0);         return php->a[0];}

    三、堆排序

    堆排序:利用堆顶节点是整个数组的最大值或者最小值的特点,可以达到排序的目的。

    比如我们要将1、5、2、4、8、6、10排成升序

    可以将这几个元素依次入堆,使得这些数据变成小堆。

    然后我们可以取堆的第一个元素,它是整个数组最小的元素,要排升序,那么我们就需要将它排在第一个位置,然后删除堆顶元素,由于我们的删除接口的作用是:删除堆顶元素,并保持堆还是小堆,那么我们调用删除接口之后,再取堆顶元素,将它排在第二个位置,依次继续下去,我们就能将这些数据排成升序了。

    参考代码:

    void HeapSort(int* a, int size){        HP hp;        HeapInit(&hp);    //建小堆        for (int i = 0; i < size; ++i)        {                HeapPush(&hp, a[i]);        }        //不断取堆顶元素进行排序        size_t j = 0;        while (!HeapEmpty(&hp))        {                a[j] = HeapTop(&hp);                j++;                HeapPop(&hp);        }    //销毁堆,防止内存泄露        HeapDestroy(&hp);}

    这里的堆排序的空间复杂度是O(N),因为在堆区开辟了一个N个元素大小的堆空间。

    堆排序看起来挺复杂的,那么它的时间复杂度是什么呢?

    建小堆:0(N)

    HeapPop()一次执行的是:头删堆顶元素(O(1)),然后依次向下比较,比较的次数是高度次,因为是完全二叉树,比较的时间复杂度是O(logN)。

    因此执行一次HeapPop的时间复杂度是O(logN)。

    那么不断取堆顶元素进行排序,取了N个元素,调用了N次HeapPop(),时间复杂度是O(N*logN)。

    总的时间复杂度是O(N)+O(N*logN),当N很大时,加的O(N)可以忽略。

    实际时间复杂就是:O(N*logN)

    空间复杂度:O(N)

    那么堆排序的时间复杂度是O(N*logN)。

    相比于冒泡排序的O(N*N)。

    堆排序显然效率更高。

    如果N等于100万,冒泡要执行1万亿次,而堆排序执行2千万次,效率可想而知!

    关于"C语言堆怎么实现和堆排序是什么"这篇文章的内容就介绍到这里,感谢各位的阅读!相信大家对"C语言堆怎么实现和堆排序是什么"知识都有一定的了解,大家如果还想学习更多知识,欢迎关注行业资讯频道。

    0