Matplotlib基本的自定义有哪些
发表于:2025-02-03 作者:千家信息网编辑
千家信息网最后更新 2025年02月03日,这篇文章给大家分享的是有关Matplotlib基本的自定义有哪些的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。在 Matplotlib 教程中,我们将讨论一些可能的图表自定
千家信息网最后更新 2025年02月03日Matplotlib基本的自定义有哪些
这篇文章给大家分享的是有关Matplotlib基本的自定义有哪些的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。
在 Matplotlib 教程中,我们将讨论一些可能的图表自定义。 为了开始修改子图,我们必须定义它们。 我们很快会谈论他们,但有两种定义并构造子图的主要方法。 现在,我们只使用其中一个,但我们会很快解释它们。
现在,修改我们的graph_data函数:
def graph_data(stock): fig = plt.figure() ax1 = plt.subplot2grid((1,1), (0,0))1234
为了修改图表,我们需要引用它,所以我们将它存储到变量fig。 然后我们将ax1定义为图表上的子图。 我们在这里使用subplot2grid,这是获取子图的两种主要方法之一。 我们将深入讨论这些东西,但现在,你应该看到我们有 2 个元组,它们提供了(1,1)和(0,0)。 1,1表明这是一个 1×1 网格。 然后0,0表明这个子图的『起点』将为0,0。
接下来,通过我们已经编写的代码来获取和解析数据:
stock_price_url = 'http://chartapi.finance.yahoo.com/instrument/1.0/'+stock+'/chartdata;type=quote;range=10y/csv' source_code = urllib.request.urlopen(stock_price_url).read().decode() stock_data = [] split_source = source_code.split('\n') for line in split_source: split_line = line.split(',') if len(split_line) == 6: if 'values' not in line and 'labels' not in line: stock_data.append(line) date, closep, highp, lowp, openp, volume = np.loadtxt(stock_data, delimiter=',', unpack=True, converters={0: bytespdate2num('%Y%m%d')})1234567891011121314
下面,我们这样绘制数据:
ax1.plot_date(date, closep,'-', label='Price')1
现在,由于我们正在绘制日期,我们可能会发现,如果我们放大,日期会在水平方向上移动。但是,我们可以自定义这些刻度标签,像这样:
for label in ax1.xaxis.get_ticklabels(): label.set_rotation(45)12
这将使标签转动到对角线方向。 接下来,我们可以添加一个网格:
ax1.grid(True)1
然后,其它东西我们保留默认,但我们也可能需要略微调整绘图,因为日期跑到了图表外面。 我们不仅可以以configure subplots按钮方式配置图表,我们还可以在代码中配置它们,以下是我们设置这些参数的方式:
plt.subplots_adjust(left=0.09, bottom=0.20, right=0.94, top=0.90, wspace=0.2, hspace=0)1
现在,为了防止我们把你遗留在某个地方,这里是完整的代码:
import matplotlib.pyplot as plt import numpy as np import urllib import matplotlib.dates as mdates def bytespdate2num(fmt, encoding='utf-8'): strconverter = mdates.strpdate2num(fmt) def bytesconverter(b): s = b.decode(encoding) return strconverter(s) return bytesconverter def graph_data(stock): fig = plt.figure() ax1 = plt.subplot2grid((1,1), (0,0)) stock_price_url = 'http://chartapi.finance.yahoo.com/instrument/1.0/'+stock+'/chartdata;type=quote;range=10y/csv' source_code = urllib.request.urlopen(stock_price_url).read().decode() stock_data = [] split_source = source_code.split('\n') for line in split_source: split_line = line.split(',') if len(split_line) == 6: if 'values' not in line and 'labels' not in line: stock_data.append(line) date, closep, highp, lowp, openp, volume = np.loadtxt(stock_data, delimiter=',', unpack=True, converters={0: bytespdate2num('%Y%m%d')}) ax1.plot_date(date, closep,'-', label='Price') for label in ax1.xaxis.get_ticklabels(): label.set_rotation(45) ax1.grid(True)#, color='g', linestyle='-', linewidth=5) plt.xlabel('Date') plt.ylabel('Price') plt.title('Interesting Graph\nCheck it out') plt.legend() plt.subplots_adjust(left=0.09, bottom=0.20, right=0.94, top=0.90, wspace=0.2, hspace=0) plt.show() graph_data('TSLA')1234567891011121314151617181920212223242526272829303132333435363738394041424344454647
结果为:
感谢各位的阅读!关于"Matplotlib基本的自定义有哪些"这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,让大家可以学到更多知识,如果觉得文章不错,可以把它分享出去让更多的人看到吧!
图表
代码
日期
接下来
东西
内容
很快
数据
方向
方式
方法
更多
标签
篇文章
网格
这是
配置
不错
实用
个子
数据库的安全要保护哪些东西
数据库安全各自的含义是什么
生产安全数据库录入
数据库的安全性及管理
数据库安全策略包含哪些
海淀数据库安全审计系统
建立农村房屋安全信息数据库
易用的数据库客户端支持安全管理
连接数据库失败ssl安全错误
数据库的锁怎样保障安全
nvsip为什么出现服务器错误
网络安全产业规模年复合增长率
数据库表修复方法
e4a数据库连接
召开网络安全专题会议简报
漳州世纪成达软件开发有限公司
证券公司做软件开发好吗
数据库给单个列添加数据
计算机网络技术专业专升本
虚拟机ftp服务器
网络安全法简要说明
安阳网络安全系统价格
服务器安装iptables
瀚高数据库无法启动服务器进程
数据库编写脚本教程
涉密企业网络安全培训
网络安全硬核正能量
软件开发要多少钱
软件开发管理缩写
合伙人软件开发
有没有服务器招管理员
数据库隔离等级划分
联机服务器管理指令集
清华同方服务器维修中心
数据中心服务器销售
数据库管理工具h
广安网络安全知识有奖答题
sql看数据库结构命令
cacd数据库
无锡海航软件开发管理方法