千家信息网

PostgreSQL中set_base_rel_pathlists函数有什么作用

发表于:2025-01-19 作者:千家信息网编辑
千家信息网最后更新 2025年01月19日,这篇文章主要介绍"PostgreSQL中set_base_rel_pathlists函数有什么作用",在日常操作中,相信很多人在PostgreSQL中set_base_rel_pathlists函数有
千家信息网最后更新 2025年01月19日PostgreSQL中set_base_rel_pathlists函数有什么作用

这篇文章主要介绍"PostgreSQL中set_base_rel_pathlists函数有什么作用",在日常操作中,相信很多人在PostgreSQL中set_base_rel_pathlists函数有什么作用问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答"PostgreSQL中set_base_rel_pathlists函数有什么作用"的疑惑有所帮助!接下来,请跟着小编一起来学习吧!

set_base_rel_pathlists函数的目的是为每一个base rel找出所有可用的访问路径(包括顺序扫描和所有可用的索引),每一个可用的路径都会添加到pathlist链表中。

一、数据结构

RelOptInfo

 typedef struct RelOptInfo {     NodeTag     type;//节点标识      RelOptKind  reloptkind;//RelOpt类型      /* all relations included in this RelOptInfo */     Relids      relids;         /*Relids(rtindex)集合 set of base relids (rangetable indexes) */      /* size estimates generated by planner */     double      rows;           /*结果元组的估算数量 estimated number of result tuples */      /* per-relation planner control flags */     bool        consider_startup;   /*是否考虑启动成本?是,需要保留启动成本低的路径 keep cheap-startup-cost paths? */     bool        consider_param_startup; /*是否考虑参数化?的路径 ditto, for parameterized paths? */     bool        consider_parallel;  /*是否考虑并行处理路径 consider parallel paths? */      /* default result targetlist for Paths scanning this relation */     struct PathTarget *reltarget;   /*扫描该Relation时默认的结果 list of Vars/Exprs, cost, width */      /* materialization information */     List       *pathlist;       /*访问路径链表 Path structures */     List       *ppilist;        /*路径链表中使用参数化路径进行 ParamPathInfos used in pathlist */     List       *partial_pathlist;   /* partial Paths */     struct Path *cheapest_startup_path;//代价最低的启动路径     struct Path *cheapest_total_path;//代价最低的整体路径     struct Path *cheapest_unique_path;//代价最低的获取唯一值的路径     List       *cheapest_parameterized_paths;//代价最低的参数化路径链表      /* parameterization information needed for both base rels and join rels */     /* (see also lateral_vars and lateral_referencers) */     Relids      direct_lateral_relids;  /*使用lateral语法,需依赖的Relids rels directly laterally referenced */     Relids      lateral_relids; /* minimum parameterization of rel */      /* information about a base rel (not set for join rels!) */     //reloptkind=RELOPT_BASEREL时使用的数据结构     Index       relid;          /* Relation ID */     Oid         reltablespace;  /* 表空间 containing tablespace */     RTEKind     rtekind;        /* 基表?子查询?还是函数等等?RELATION, SUBQUERY, FUNCTION, etc */     AttrNumber  min_attr;       /* 最小的属性编号 smallest attrno of rel (often <0) */     AttrNumber  max_attr;       /* 最大的属性编号 largest attrno of rel */     Relids     *attr_needed;    /* 数组 array indexed [min_attr .. max_attr] */     int32      *attr_widths;    /* 属性宽度 array indexed [min_attr .. max_attr] */     List       *lateral_vars;   /* 关系依赖的Vars/PHVs LATERAL Vars and PHVs referenced by rel */     Relids      lateral_referencers;    /*依赖该关系的Relids rels that reference me laterally */     List       *indexlist;      /* 该关系的IndexOptInfo链表 list of IndexOptInfo */     List       *statlist;       /* 统计信息链表 list of StatisticExtInfo */     BlockNumber pages;          /* 块数 size estimates derived from pg_class */     double      tuples;         /* 元组数 */     double      allvisfrac;     /* ? */     PlannerInfo *subroot;       /* 如为子查询,存储子查询的root if subquery */     List       *subplan_params; /* 如为子查询,存储子查询的参数 if subquery */     int         rel_parallel_workers;   /* 并行执行,需要多少个workers? wanted number of parallel workers */      /* Information about foreign tables and foreign joins */     //FDW相关信息     Oid         serverid;       /* identifies server for the table or join */     Oid         userid;         /* identifies user to check access as */     bool        useridiscurrent;    /* join is only valid for current user */     /* use "struct FdwRoutine" to avoid including fdwapi.h here */     struct FdwRoutine *fdwroutine;     void       *fdw_private;      /* cache space for remembering if we have proven this relation unique */     //已知的,可保证唯一元组返回的Relids链表     List       *unique_for_rels;    /* known unique for these other relid                                      * set(s) */     List       *non_unique_for_rels;    /* 已知的,返回的数据不唯一的Relids链表 known not unique for these set(s) */      /* used by various scans and joins: */     List       *baserestrictinfo;   /* 如为基本关系,则存储约束条件 RestrictInfo structures (if base rel) */     QualCost    baserestrictcost;   /* 解析约束表达式的成本? cost of evaluating the above */     Index       baserestrict_min_security;  /* 最低安全等级 min security_level found in                                              * baserestrictinfo */     List       *joininfo;       /* 连接语句的约束条件信息 RestrictInfo structures for join clauses                                  * involving this rel */     bool        has_eclass_joins;   /* 是否存在等价类连接? True意味着joininfo并不完整,,T means joininfo is incomplete */      /* used by partitionwise joins: */       //是否尝试partitionwise连接,这是PG 11的一个新特性.     bool        consider_partitionwise_join;    /* consider partitionwise                                                  * join paths? (if                                                  * partitioned rel) */     Relids      top_parent_relids;  /* Relids of topmost parents (if "other"                                      * rel) */      /* used for partitioned relations */     //分区表使用     PartitionScheme part_scheme;    /* 分区的schema Partitioning scheme. */     int         nparts;         /* 分区数 number of partitions */     struct PartitionBoundInfoData *boundinfo;   /* 分区边界信息 Partition bounds */     List       *partition_qual; /* 分区约束 partition constraint */     struct RelOptInfo **part_rels;  /* 分区的RelOptInfo数组 Array of RelOptInfos of partitions,                                      * stored in the same order of bounds */     List      **partexprs;      /* 非空分区键表达式 Non-nullable partition key expressions. */     List      **nullable_partexprs; /* 可为空的分区键表达式 Nullable partition key expressions. */     List       *partitioned_child_rels; /* RT Indexes链表 List of RT indexes. */ } RelOptInfo;

Cost相关
注意:实际使用的参数值通过系统配置文件定义,而不是这里的常量定义!

/*  * The cost estimate produced by cost_qual_eval() includes both a one-time  * (startup) cost, and a per-tuple cost.  */ typedef struct QualCost {     Cost        startup;        /* 启动成本,one-time cost */     Cost        per_tuple;      /* 每个元组的成本,per-evaluation cost */ } QualCost; typedef double Cost; /* execution cost (in page-access units) */ /* defaults for costsize.c's Cost parameters */ /* NB: cost-estimation code should use the variables, not these constants! */ /* 注意:实际值通过系统配置文件定义,而不是这里的常量定义! */ /* If you change these, update backend/utils/misc/postgresql.sample.conf */ #define DEFAULT_SEQ_PAGE_COST  1.0       //顺序扫描page的成本 #define DEFAULT_RANDOM_PAGE_COST  4.0      //随机扫描page的成本 #define DEFAULT_CPU_TUPLE_COST  0.01     //处理一个元组的CPU成本 #define DEFAULT_CPU_INDEX_TUPLE_COST 0.005   //处理一个索引元组的CPU成本 #define DEFAULT_CPU_OPERATOR_COST  0.0025    //执行一次操作或函数的CPU成本 #define DEFAULT_PARALLEL_TUPLE_COST 0.1    //并行执行,从一个worker传输一个元组到另一个worker的成本 #define DEFAULT_PARALLEL_SETUP_COST  1000.0  //构建并行执行环境的成本  #define DEFAULT_EFFECTIVE_CACHE_SIZE  524288    /*先前已有介绍, measured in pages */ double      seq_page_cost = DEFAULT_SEQ_PAGE_COST; double      random_page_cost = DEFAULT_RANDOM_PAGE_COST; double      cpu_tuple_cost = DEFAULT_CPU_TUPLE_COST; double      cpu_index_tuple_cost = DEFAULT_CPU_INDEX_TUPLE_COST; double      cpu_operator_cost = DEFAULT_CPU_OPERATOR_COST; double      parallel_tuple_cost = DEFAULT_PARALLEL_TUPLE_COST; double      parallel_setup_cost = DEFAULT_PARALLEL_SETUP_COST;  int         effective_cache_size = DEFAULT_EFFECTIVE_CACHE_SIZE;  Cost        disable_cost = 1.0e10;//1后面10个0,通过设置一个巨大的成本,让优化器自动放弃此路径  int         max_parallel_workers_per_gather = 2;//每次gather使用的worker数

IndexClauseSet
用于收集匹配索引的的条件语句

 /* Data structure for collecting qual clauses that match an index */ typedef struct {     bool        nonempty;       /* True if lists are not all empty */     /* Lists of RestrictInfos, one per index column */     List       *indexclauses[INDEX_MAX_KEYS]; } IndexClauseSet;

二、源码解读

set_base_rel_pathlists函数遍历RelOptInfo数组,为每一个Rel构造访问路径,先前已介绍了顺序扫描的成本估算,本节介绍索引扫描的成本估算(函数:create_index_paths),通过调用set_plain_rel_pathlist->create_index_paths函数实现.

 /*  * set_plain_rel_pathlist  *    Build access paths for a plain relation (no subquery, no inheritance)  */ static void set_plain_rel_pathlist(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte) {     Relids      required_outer;      //...      /* 索引扫描,Consider index scans */     create_index_paths(root, rel);      /* TID扫描,Consider TID scans */     create_tidscan_paths(root, rel); }

create_index_paths
create_index_paths函数生成Relation所有可能被选中的索引访问路径,详见源码注释.

 /*  * create_index_paths()  *    Generate all interesting index paths for the given relation.  *    Candidate paths are added to the rel's pathlist (using add_path).  *    生成Relation所有可能被选中的索引访问路径.  *    Paths通过add_path方法加入到RelOptInfo的pathlist链表中.  *  * To be considered for an index scan, an index must match one or more  * restriction clauses or join clauses from the query's qual condition,  * or match the query's ORDER BY condition, or have a predicate that  * matches the query's qual condition.  * 使用索引扫描的前提是:1.索引必须匹配一个或多个限制条件或连接条件,或者  * 2.匹配查询的ORDER BY排序条件,或者3.匹配查询条件的谓词(部分/条件索引)  *  * There are two basic kinds of index scans.  A "plain" index scan uses  * only restriction clauses (possibly none at all) in its indexqual,  * so it can be applied in any context.  A "parameterized" index scan uses  * join clauses (plus restriction clauses, if available) in its indexqual.  * When joining such a scan to one of the relations supplying the other  * variables used in its indexqual, the parameterized scan must appear as  * the inner relation of a nestloop join; it can't be used on the outer side,  * nor in a merge or hash join.  In that context, values for the other rels'  * attributes are available and fixed during any one scan of the indexpath.  * 有两种基本的索引扫描类型,一种是"plain"索引扫描,只使用限制条件(或者什么都  *  没有),这种扫描方法适用于任何场景.另外一种是"parameterized"扫描,使用连接条件  *  (可能的话,加上限制条件)."parameterized"扫描只能出现在嵌套循环中的内关系中,  *  因为参数由外关系提供.  *  * An IndexPath is generated and submitted to add_path() for each plain or  * parameterized index scan this routine deems potentially interesting for  * the current query.  * IndexPath访问路径通过函数add_path生成并提交.  *  * 输入参数:  * 'rel' is the relation for which we want to generate index paths  * rel是待生成索引范围路径的关系  *  * Note: check_index_predicates() must have been run previously for this rel.  * 注意:函数check_index_predicates在调用此函数前调用  *  * Note: in cases involving LATERAL references in the relation's tlist, it's  * possible that rel->lateral_relids is nonempty.  Currently, we include  * lateral_relids into the parameterization reported for each path, but don't  * take it into account otherwise.  The fact that any such rels *must* be  * available as parameter sources perhaps should influence our choices of  * index quals ... but for now, it doesn't seem worth troubling over.  * In particular, comments below about "unparameterized" paths should be read  * as meaning "unparameterized so far as the indexquals are concerned".  */ void create_index_paths(PlannerInfo *root, RelOptInfo *rel) {     List       *indexpaths;//索引访问路径链表     List       *bitindexpaths;//     List       *bitjoinpaths;     List       *joinorclauses;     IndexClauseSet rclauseset;     IndexClauseSet jclauseset;     IndexClauseSet eclauseset;     ListCell   *lc;      /* Skip the whole mess if no indexes */     if (rel->indexlist == NIL)//不存在索引,退出         return;      /* Bitmap paths are collected and then dealt with at the end */     bitindexpaths = bitjoinpaths = joinorclauses = NIL;//初始赋值      /* Examine each index in turn */     foreach(lc, rel->indexlist)//遍历索引链表     {         IndexOptInfo *index = (IndexOptInfo *) lfirst(lc);//索引信息          /* Protect limited-size array in IndexClauseSets */         Assert(index->ncolumns <= INDEX_MAX_KEYS);          /*          * Ignore partial indexes that do not match the query.          * (generate_bitmap_or_paths() might be able to do something with          * them, but that's of no concern here.)          */         if (index->indpred != NIL && !index->predOK)//部分索引,而且不能使用,不使用此索引             continue;          /*          * Identify the restriction clauses that can match the index.          * 验证索引和条件是否匹配          */         MemSet(&rclauseset, 0, sizeof(rclauseset));         match_restriction_clauses_to_index(rel, index, &rclauseset);          /*          * Build index paths from the restriction clauses.  These will be          * non-parameterized paths.  Plain paths go directly to add_path(),          * bitmap paths are added to bitindexpaths to be handled below.          * 通过限制条件创建非参数化索引访问路径.Plain访问路径通过函数add_path直接添加到RelOptInfo中          * 位图访问路径添加到bitindexpaths链表中,后续再处理          */         get_index_paths(root, rel, index, &rclauseset,                         &bitindexpaths);          /*          * Identify the join clauses that can match the index.  For the moment          * we keep them separate from the restriction clauses.  Note that this          * step finds only "loose" join clauses that have not been merged into          * EquivalenceClasses.  Also, collect join OR clauses for later.          * 验证索引是否与连接条件匹配(连接条件与限制条件相互独立).          * 这一步只是发现未被合并到EC中的"loose"连接条件,在此之后会收集连接中的OR条件          */         MemSet(&jclauseset, 0, sizeof(jclauseset));         match_join_clauses_to_index(root, rel, index,                                     &jclauseset, &joinorclauses);          /*          * Look for EquivalenceClasses that can generate joinclauses matching          * the index.          * 通过EC(等价类)匹配索引,结果存储在eclauseset链表中          */         MemSet(&eclauseset, 0, sizeof(eclauseset));         match_eclass_clauses_to_index(root, index,                                       &eclauseset);          /*          * If we found any plain or eclass join clauses, build parameterized          * index paths using them.          * 如果存在plain或者eclass连接条件,创建参数化索引访问路径          */         if (jclauseset.nonempty || eclauseset.nonempty)             consider_index_join_clauses(root, rel, index,                                         &rclauseset,                                         &jclauseset,                                         &eclauseset,                                         &bitjoinpaths);     }      /*      * Generate BitmapOrPaths for any suitable OR-clauses present in the      * restriction list.  Add these to bitindexpaths.      * 基于RelOptInfo中的限制条件生成BitmapOrPaths访问路径      */     indexpaths = generate_bitmap_or_paths(root, rel,                                           rel->baserestrictinfo, NIL);     bitindexpaths = list_concat(bitindexpaths, indexpaths);//合并到bitindexpaths链表中      /*      * Likewise, generate BitmapOrPaths for any suitable OR-clauses present in      * the joinclause list.  Add these to bitjoinpaths.      * 同样的,基于连接条件joinorclause中的OR语句生成BitmapOrPaths访问路径      */     indexpaths = generate_bitmap_or_paths(root, rel,                                           joinorclauses, rel->baserestrictinfo);     bitjoinpaths = list_concat(bitjoinpaths, indexpaths);//合并到bitjoinpaths链表中      /*      * If we found anything usable, generate a BitmapHeapPath for the most      * promising combination of restriction bitmap index paths.  Note there      * will be only one such path no matter how many indexes exist.  This      * should be sufficient since there's basically only one figure of merit      * (total cost) for such a path.      */     if (bitindexpaths != NIL)//存在位图索引访问路径     {         Path       *bitmapqual;//访问路径         BitmapHeapPath *bpath;//BitmapHeapPath访问路径          bitmapqual = choose_bitmap_and(root, rel, bitindexpaths);//位图表达式路径         bpath = create_bitmap_heap_path(root, rel, bitmapqual,                                         rel->lateral_relids, 1.0, 0);//BitmapHeapPath访问路径         add_path(rel, (Path *) bpath);//添加到RelOptInfo中          /* create a partial bitmap heap path */         if (rel->consider_parallel && rel->lateral_relids == NULL)             create_partial_bitmap_paths(root, rel, bitmapqual);//创建并行访问路径     }      /*      * Likewise, if we found anything usable, generate BitmapHeapPaths for the      * most promising combinations of join bitmap index paths.  Our strategy      * is to generate one such path for each distinct parameterization seen      * among the available bitmap index paths.  This may look pretty      * expensive, but usually there won't be very many distinct      * parameterizations.  (This logic is quite similar to that in      * consider_index_join_clauses, but we're working with whole paths not      * individual clauses.)      */     if (bitjoinpaths != NIL)//bitjoinpaths位图连接访问路径     {         List       *path_outer;//依赖的外部Relids链表         List       *all_path_outers;//依赖的外部路径Relids链表         ListCell   *lc;//临时变量          /*          * path_outer holds the parameterization of each path in bitjoinpaths          * (to save recalculating that several times), while all_path_outers          * holds all distinct parameterization sets.          */         path_outer = all_path_outers = NIL;//初始化变量         foreach(lc, bitjoinpaths)//遍历bitjoinpaths         {             Path       *path = (Path *) lfirst(lc);//访问路径             Relids      required_outer;//依赖的外部Relids              required_outer = get_bitmap_tree_required_outer(path);//             path_outer = lappend(path_outer, required_outer);//添加到链表中             if (!bms_equal_any(required_outer, all_path_outers))//不等,则添加到all_path_outers中                 all_path_outers = lappend(all_path_outers, required_outer);         }          /* Now, for each distinct parameterization set ... */         //对每一个唯一的参数化集合进行处理         foreach(lc, all_path_outers)//遍历all_path_outers         {             Relids      max_outers = (Relids) lfirst(lc);             List       *this_path_set;             Path       *bitmapqual;             Relids      required_outer;             double      loop_count;             BitmapHeapPath *bpath;             ListCell   *lcp;             ListCell   *lco;              /* Identify all the bitmap join paths needing no more than that */             this_path_set = NIL;             forboth(lcp, bitjoinpaths, lco, path_outer)//遍历             {                 Path       *path = (Path *) lfirst(lcp);                 Relids      p_outers = (Relids) lfirst(lco);                  if (bms_is_subset(p_outers, max_outers))//无需依赖其他Relids,添加到this_path_set中                     this_path_set = lappend(this_path_set, path);             }              /*              * Add in restriction bitmap paths, since they can be used              * together with any join paths.              */             this_path_set = list_concat(this_path_set, bitindexpaths);//合并bitindexpaths访问路径              /* Select best AND combination for this parameterization */             bitmapqual = choose_bitmap_and(root, rel, this_path_set);//为此参数化处理选择最好的AND组合              /* And push that path into the mix */             required_outer = get_bitmap_tree_required_outer(bitmapqual);             loop_count = get_loop_count(root, rel->relid, required_outer);             bpath = create_bitmap_heap_path(root, rel, bitmapqual,                                             required_outer, loop_count, 0);//创建索引访问路径             add_path(rel, (Path *) bpath);         }     } }

match_XXX
match_restriction_clauses_to_index函数验证限制条件是否与Index匹配,匹配的条件添加到clauseset中.
match_join_clauses_to_index函数验证连接条件是否与Index匹配,同样的,匹配的条件添加到clauseset中.
match_eclass_clauses_to_index函数验证EC连接条件是否与Index匹配,匹配的条件添加到clauseset中.

//--------------------------------------------------- match_restriction_clauses_to_index /*  * match_restriction_clauses_to_index  *    Identify restriction clauses for the rel that match the index.  *    Matching clauses are added to *clauseset.  *    验证限制条件是否与Index匹配,匹配的条件加入到clauseset中  */ static void match_restriction_clauses_to_index(RelOptInfo *rel, IndexOptInfo *index,                                    IndexClauseSet *clauseset) {     /* We can ignore clauses that are implied by the index predicate */     //忽略部分(条件)索引,直接调用match_clauses_to_index     match_clauses_to_index(index, index->indrestrictinfo, clauseset); } //------------------------------- match_clauses_to_index /*  * match_clauses_to_index  *    Perform match_clause_to_index() for each clause in a list.  *    Matching clauses are added to *clauseset.  */ static void match_clauses_to_index(IndexOptInfo *index,                        List *clauses,                        IndexClauseSet *clauseset) {     ListCell   *lc;//临时变量      foreach(lc, clauses)//遍历限制条件     {         RestrictInfo *rinfo = lfirst_node(RestrictInfo, lc);          match_clause_to_index(index, rinfo, clauseset);     } }//--------------------------------------------------- match_join_clauses_to_index /*  * match_join_clauses_to_index  *    Identify join clauses for the rel that match the index.  *    Matching clauses are added to *clauseset.  *    Also, add any potentially usable join OR clauses to *joinorclauses.  *    验证连接条件是否与Index匹配,匹配的条件添加到clauseset中  *    另外,在joinorclauses中添加可能有用的连接条件OR子句  */ static void match_join_clauses_to_index(PlannerInfo *root,                             RelOptInfo *rel, IndexOptInfo *index,                             IndexClauseSet *clauseset,                             List **joinorclauses) {     ListCell   *lc;//临时变量      /* Scan the rel's join clauses */     foreach(lc, rel->joininfo)//遍历连接条件     {         RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);          /* Check if clause can be moved to this rel */         if (!join_clause_is_movable_to(rinfo, rel))             continue;          /* Potentially usable, so see if it matches the index or is an OR */         if (restriction_is_or_clause(rinfo))             *joinorclauses = lappend(*joinorclauses, rinfo);         else             match_clause_to_index(index, rinfo, clauseset);     } }//--------------------------------------------------- match_eclass_clauses_to_index /*  * match_eclass_clauses_to_index  *    Identify EquivalenceClass join clauses for the rel that match the index.  *    Matching clauses are added to *clauseset.  *    验证EC连接条件是否与Index匹配,相匹配的子句加入到clauseset中  */ static void match_eclass_clauses_to_index(PlannerInfo *root, IndexOptInfo *index,                               IndexClauseSet *clauseset) {     int         indexcol;      /* No work if rel is not in any such ECs */     if (!index->rel->has_eclass_joins)//没有ECs,返回         return;      for (indexcol = 0; indexcol < index->nkeycolumns; indexcol++)//遍历索引列     {         ec_member_matches_arg arg;         List       *clauses;          /* Generate clauses, skipping any that join to lateral_referencers */         //生成条件子句链表         arg.index = index;         arg.indexcol = indexcol;         clauses = generate_implied_equalities_for_column(root,                                                          index->rel,                                                          ec_member_matches_indexcol,                                                          (void *) &arg,                                                          index->rel->lateral_referencers);          /*          * We have to check whether the results actually do match the index,          * since for non-btree indexes the EC's equality operators might not          * be in the index opclass (cf ec_member_matches_indexcol).          */         match_clauses_to_index(index, clauses, clauseset);     } }//---------------------------- generate_implied_equalities_for_column /*  * generate_implied_equalities_for_column  *    Create EC-derived joinclauses usable with a specific column.  *    创建可用于特定列的EC衍生连接条件  *  * This is used by indxpath.c to extract potentially indexable joinclauses  * from ECs, and can be used by foreign data wrappers for similar purposes.  * We assume that only expressions in Vars of a single table are of interest,  * but the caller provides a callback function to identify exactly which  * such expressions it would like to know about.  *  * We assume that any given table/index column could appear in only one EC.  * (This should be true in all but the most pathological cases, and if it  * isn't, we stop on the first match anyway.)  Therefore, what we return  * is a redundant list of clauses equating the table/index column to each of  * the other-relation values it is known to be equal to.  Any one of  * these clauses can be used to create a parameterized path, and there  * is no value in using more than one.  (But it *is* worthwhile to create  * a separate parameterized path for each one, since that leads to different  * join orders.)  *  * The caller can pass a Relids set of rels we aren't interested in joining  * to, so as to save the work of creating useless clauses.  */ List * generate_implied_equalities_for_column(PlannerInfo *root,                                        RelOptInfo *rel,                                        ec_matches_callback_type callback,                                        void *callback_arg,                                        Relids prohibited_rels) {     List       *result = NIL;//结果链表     bool        is_child_rel = (rel->reloptkind == RELOPT_OTHER_MEMBER_REL);//是否子Relation     Relids      parent_relids;//父Relids     ListCell   *lc1;//变量      /* Indexes are available only on base or "other" member relations. */     Assert(IS_SIMPLE_REL(rel));      /* If it's a child rel, we'll need to know what its parent(s) are */     if (is_child_rel)         parent_relids = find_childrel_parents(root, rel);     else         parent_relids = NULL;   /* not used, but keep compiler quiet */      foreach(lc1, root->eq_classes)//遍历EC     {         EquivalenceClass *cur_ec = (EquivalenceClass *) lfirst(lc1);//当前的EC         EquivalenceMember *cur_em;//EC成员         ListCell   *lc2;//链表成员          /*          * Won't generate joinclauses if const or single-member (the latter          * test covers the volatile case too)          */         if (cur_ec->ec_has_const || list_length(cur_ec->ec_members) <= 1)             continue;          /*          * No point in searching if rel not mentioned in eclass (but we can't          * tell that for a child rel).          */         if (!is_child_rel &&             !bms_is_subset(rel->relids, cur_ec->ec_relids))             continue;          /*          * Scan members, looking for a match to the target column.  Note that          * child EC members are considered, but only when they belong to the          * target relation.  (Unlike regular members, the same expression          * could be a child member of more than one EC.  Therefore, it's          * potentially order-dependent which EC a child relation's target          * column gets matched to.  This is annoying but it only happens in          * corner cases, so for now we live with just reporting the first          * match.  See also get_eclass_for_sort_expr.)          */         cur_em = NULL;         foreach(lc2, cur_ec->ec_members)//遍历EC的成员         {             cur_em = (EquivalenceMember *) lfirst(lc2);//当前成员             if (bms_equal(cur_em->em_relids, rel->relids) &&                 callback(root, rel, cur_ec, cur_em, callback_arg))//调用ec_member_matches_indexcol函数                 break;//找到匹配的成员,跳出             cur_em = NULL;         }          if (!cur_em)             continue;          /*          * Found our match.  Scan the other EC members and attempt to generate          * joinclauses.          */         foreach(lc2, cur_ec->ec_members)         {             EquivalenceMember *other_em = (EquivalenceMember *) lfirst(lc2);             Oid         eq_op;             RestrictInfo *rinfo;              if (other_em->em_is_child)//                 continue;       /* 忽略子成员,ignore children here */              /* Make sure it'll be a join to a different rel */             if (other_em == cur_em ||                 bms_overlap(other_em->em_relids, rel->relids))//过滤cur_em                 continue;              /* Forget it if caller doesn't want joins to this rel */             if (bms_overlap(other_em->em_relids, prohibited_rels))                 continue;              /*              * Also, if this is a child rel, avoid generating a useless join              * to its parent rel(s).              */             if (is_child_rel &&                 bms_overlap(parent_relids, other_em->em_relids))                 continue;              eq_op = select_equality_operator(cur_ec,                                              cur_em->em_datatype,                                              other_em->em_datatype);             if (!OidIsValid(eq_op))                 continue;              /* set parent_ec to mark as redundant with other joinclauses */             rinfo = create_join_clause(root, cur_ec, eq_op,                                        cur_em, other_em,                                        cur_ec);//创建连接条件语句              result = lappend(result, rinfo);         }          /*          * If somehow we failed to create any join clauses, we might as well          * keep scanning the ECs for another match.  But if we did make any,          * we're done, because we don't want to return non-redundant clauses.          */         if (result)             break;     }      return result; }//---------------------------- match_clause_to_index /*  * match_clause_to_index  *    Test whether a qual clause can be used with an index.  *  * If the clause is usable, add it to the appropriate list in *clauseset.  * *clauseset must be initialized to zeroes before first call.  *  * Note: in some circumstances we may find the same RestrictInfos coming from  * multiple places.  Defend against redundant outputs by refusing to add a  * clause twice (pointer equality should be a good enough check for this).  *  * Note: it's possible that a badly-defined index could have multiple matching  * columns.  We always select the first match if so; this avoids scenarios  * wherein we get an inflated idea of the index's selectivity by using the  * same clause multiple times with different index columns.  */ static void match_clause_to_index(IndexOptInfo *index,                       RestrictInfo *rinfo,                       IndexClauseSet *clauseset) {     int         indexcol;      /*      * Never match pseudoconstants to indexes.  (Normally a match could not      * happen anyway, since a pseudoconstant clause couldn't contain a Var,      * but what if someone builds an expression index on a constant? It's not      * totally unreasonable to do so with a partial index, either.)      */     if (rinfo->pseudoconstant)         return;      /*      * If clause can't be used as an indexqual because it must wait till after      * some lower-security-level restriction clause, reject it.      */     if (!restriction_is_securely_promotable(rinfo, index->rel))         return;      /* OK, check each index key column for a match */     for (indexcol = 0; indexcol < index->nkeycolumns; indexcol++)     {         if (match_clause_to_indexcol(index,                                      indexcol,                                      rinfo))         {             clauseset->indexclauses[indexcol] =                 list_append_unique_ptr(clauseset->indexclauses[indexcol],                                        rinfo);//赋值             clauseset->nonempty = true;//设置标记             return;         }     } }//------------------- match_clause_to_indexcol /*  * match_clause_to_indexcol()  *    Determines whether a restriction clause matches a column of an index.  *    判断约束条件是否与索引中的某一列匹配  *  *    To match an index normally, the clause:  *    通常来说,匹配索引,子句必须:  *    (1)  must be in the form (indexkey op const) or (const op indexkey);  *         and  *         满足格式:(索引键 操作符 常量) 或者 (常量 操作符 索引键),而且  *    (2)  must contain an operator which is in the same family as the index  *         operator for this column, or is a "special" operator as recognized  *         by match_special_index_operator();  *         and  *         包含一种与索引列同一family的操作符,或者是一种通过            match_special_index_operator方法认定的特殊操作符  *    (3)  must match the collation of the index, if collation is relevant.  *         与索引的排序规则collation匹配  *   *    Our definition of "const" is exceedingly liberal: we allow anything that  *    doesn't involve a volatile function or a Var of the index's relation.  *    In particular, Vars belonging to other relations of the query are  *    accepted here, since a clause of that form can be used in a  *    parameterized indexscan.  It's the responsibility of higher code levels  *    to manage restriction and join clauses appropriately.  *    这里"const"常量的定义非常自由:除了易变函数或索引关系的Var之外的,均视为"const"  *    由于存在参数化索引扫描的可能,因此查询中属于其他Relations的Vars也可以在此出现.  *    调用此函数的代码有责任"合适"的管理限制条件和连接条件.  *  *    Note: we do need to check for Vars of the index's relation on the  *    "const" side of the clause, since clauses like (a.f1 OP (b.f2 OP a.f3))  *    are not processable by a parameterized indexscan on a.f1, whereas  *    something like (a.f1 OP (b.f2 OP c.f3)) is.  *    注意:需要在子句的const部分检查索引关系的Vars,因为子句  *    如(a.f1 OP (b.f2 OP a.f3)不能通过a上的参数化索引扫描进行处理  *  *    Presently, the executor can only deal with indexquals that have the  *    indexkey on the left, so we can only use clauses that have the indexkey  *    on the right if we can commute the clause to put the key on the left.  *    We do not actually do the commuting here, but we check whether a  *    suitable commutator operator is available.  *    目前为止,执行器只能处理索引键在左边的索引表达式,因此只能使用那些可以  *    把索引键变换到左边的条件表达式.在这个函数中不执行变换,但会执行相应的检查.  *  *    If the index has a collation, the clause must have the same collation.  *    For collation-less indexes, we assume it doesn't matter; this is  *    necessary for cases like "hstore ? text", wherein hstore's operators  *    don't care about collation but the clause will get marked with a  *    collation anyway because of the text argument.  (This logic is  *    embodied in the macro IndexCollMatchesExprColl.)  *    如果索引含有排序规则(collation),条件子句必须包含相同的排序规则.  *    对于无collation的索引,假定collation没有任何影响.  *  *    It is also possible to match RowCompareExpr clauses to indexes (but  *    currently, only btree indexes handle this).  In this routine we will  *    report a match if the first column of the row comparison matches the  *    target index column.  This is sufficient to guarantee that some index  *    condition can be constructed from the RowCompareExpr --- whether the  *    remaining columns match the index too is considered in  *    adjust_rowcompare_for_index().  *    RowCompareExpr有可能与索引进行匹配,在这个处理过程中,如果行对比的第一个列  *    与目标索引匹配,那么可以认为是匹配的.  *  *    It is also possible to match ScalarArrayOpExpr clauses to indexes, when  *    the clause is of the form "indexkey op ANY (arrayconst)".  *    如果子句的格式是"indexkey op ANY (arrayconst)",那么匹配ScalarArrayOpExpr  *    也是可能的.  *  *    For boolean indexes, it is also possible to match the clause directly  *    to the indexkey; or perhaps the clause is (NOT indexkey).  *    对于布尔索引,可以直接与索引键进行匹配  *  * 输入参数:  * 'index' is the index of interest.  * index-正在处理的索引  * 'indexcol' is a column number of 'index' (counting from 0).  * indexcol-索引列(从0起算)  * 'rinfo' is the clause to be tested (as a RestrictInfo node).  * rinfo-RestrictInfo Node  *  * Returns true if the clause can be used with this index key.  * 如可以使用索引,则返回T  *  * NOTE:  returns false if clause is an OR or AND clause; it is the  * responsibility of higher-level routines to cope with those.  * 注意:如果条件语句是OR/AND语句,则返回F,由上层处理逻辑处理  */ static bool match_clause_to_indexcol(IndexOptInfo *index,                          int indexcol,                          RestrictInfo *rinfo) {     Expr       *clause = rinfo->clause;//条件语句     Index       index_relid = index->rel->relid;//Index的Relid     Oid         opfamily;//操作符种类     Oid         idxcollation;//索引排序规则     Node       *leftop,//左节点                *rightop;//右节点     Relids      left_relids;//左节点相关Relids     Relids      right_relids;//右节点相关Relids     Oid         expr_op;//表达式操作符的Oid     Oid         expr_coll;//表达式Collation的Oid     bool        plain_op;//是否Plain操作符      Assert(indexcol < index->nkeycolumns);      opfamily = index->opfamily[indexcol];//获取操作符种类     idxcollation = index->indexcollations[indexcol];//获取索引排序规则      /* First check for boolean-index cases. */     if (IsBooleanOpfamily(opfamily))//是否布尔类     {         if (match_boolean_index_clause((Node *) clause, indexcol, index))//是否匹配             return true;//如匹配,返回T     }      /*      * Clause must be a binary opclause, or possibly a ScalarArrayOpExpr      * (which is always binary, by definition).  Or it could be a      * RowCompareExpr, which we pass off to match_rowcompare_to_indexcol().      * Or, if the index supports it, we can handle IS NULL/NOT NULL clauses.      */     if (is_opclause(clause))//OpExpr     {         leftop = get_leftop(clause);         rightop = get_rightop(clause);         if (!leftop || !rightop)             return false;         left_relids = rinfo->left_relids;         right_relids = rinfo->right_relids;         expr_op = ((OpExpr *) clause)->opno;         expr_coll = ((OpExpr *) clause)->inputcollid;         plain_op = true;     }     else if (clause && IsA(clause, ScalarArrayOpExpr))//ScalarArrayOpExpr     {         ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) clause;          /* We only accept ANY clauses, not ALL */         if (!saop->useOr)             return false;         leftop = (Node *) linitial(saop->args);         rightop = (Node *) lsecond(saop->args);         left_relids = NULL;     /* not actually needed */         right_relids = pull_varnos(rightop);         expr_op = saop->opno;         expr_coll = saop->inputcollid;         plain_op = false;     }     else if (clause && IsA(clause, RowCompareExpr))//RowCompareExpr     {         return match_rowcompare_to_indexcol(index, indexcol,                                             opfamily, idxcollation,                                             (RowCompareExpr *) clause);     }     else if (index->amsearchnulls && IsA(clause, NullTest))//NullTest     {         NullTest   *nt = (NullTest *) clause;          if (!nt->argisrow &&             match_index_to_operand((Node *) nt->arg, indexcol, index))             return true;         return false;     }     else         return false;      /*      * Check for clauses of the form: (indexkey operator constant) or      * (constant operator indexkey).  See above notes about const-ness.      * (indexkey operator constant)和(constant operator indexkey)格式的语句      */     //处理:(indexkey operator constant)     if (match_index_to_operand(leftop, indexcol, index) &&         !bms_is_member(index_relid, right_relids) &&         !contain_volatile_functions(rightop))     {         if (IndexCollMatchesExprColl(idxcollation, expr_coll) &&             is_indexable_operator(expr_op, opfamily, true))//排序规则&操作符种类匹配             return true;//返回T          /*          * If we didn't find a member of the index's opfamily, see whether it          * is a "special" indexable operator.          */         if (plain_op &&             match_special_index_operator(clause, opfamily,                                          idxcollation, true))//Plain操作&特殊操作符,返回T             return true;         return false;//否则,返回F     }      //处理(constant operator indexkey)     if (plain_op &&         match_index_to_operand(rightop, indexcol, index) &&         !bms_is_member(index_relid, left_relids) &&         !contain_volatile_functions(leftop))     {         if (IndexCollMatchesExprColl(idxcollation, expr_coll) &&             is_indexable_operator(expr_op, opfamily, false))             return true;          /*          * If we didn't find a member of the index's opfamily, see whether it          * is a "special" indexable operator.          */         if (match_special_index_operator(clause, opfamily,                                          idxcollation, false))             return true;         return false;     }      return false; }

三、跟踪分析

测试脚本如下

select a.*,b.grbh,b.je from t_dwxx a,    lateral (select t1.dwbh,t1.grbh,t2.je      from t_grxx t1           inner join t_jfxx t2 on t1.dwbh = a.dwbh and t1.grbh = t2.grbh) bwhere a.dwbh = '1001'order by b.dwbh;

注意:按先前的分析,SQL语句存在等价类{t_dwxx.dwbh t_grxx.dwbh '1001'}和{t_grxx.grbh t_jfxx.grbh},在构造t_grxx的索引访问路径时,使用等价类构造.

启动gdb,第一个RelOptInfo(对应t_dwxx)有3个Index,第二个RelOptInfo(对应t_grxx)有2个Index(分别是在dwbh和grbh上的索引),第三个RelOptInfo(对应t_jfxx)有1个Index(grbh上的索引),本节以t_jfxx和t_grxx为例进行跟踪分析

...(gdb) cContinuing.Breakpoint 1, create_index_paths (root=0x2714c50, rel=0x2729530) at indxpath.c:242242   if (rel->indexlist == NIL)(gdb) p *(IndexOptInfo *)rel->indexlist->head->data.ptr_value$38 = {type = T_IndexOptInfo, indexoid = 16750, reltablespace = 0, rel = 0x2729530, pages = 276, tuples = 100000,   tree_height = 1, ncolumns = 1, nkeycolumns = 1, indexkeys = 0x2729998, indexcollations = 0x27299b0, opfamily = 0x27299c8,   opcintype = 0x27299e0, sortopfamily = 0x27299c8, reverse_sort = 0x2729a10, nulls_first = 0x2729a28,   canreturn = 0x27299f8, relam = 403, indexprs = 0x0, indpred = 0x0, indextlist = 0x2729ae0, indrestrictinfo = 0x0,   predOK = false, unique = false, immediate = true, hypothetical = false, amcanorderbyop = false, amoptionalkey = true,   amsearcharray = true, amsearchnulls = true, amhasgettuple = true, amhasgetbitmap = true, amcanparallel = true,   amcostestimate = 0x94f0ad }

输入信息是已熟知的root(PlannerInfo)和rel(RelOptInfo).首先进行索引遍历循环

(gdb) cContinuing.Breakpoint 1, create_index_paths (root=0x2714c50, rel=0x2729530) at indxpath.c:242242   if (rel->indexlist == NIL)(gdb) p *(IndexOptInfo *)rel->indexlist->head->data.ptr_value$38 = {type = T_IndexOptInfo, indexoid = 16750, reltablespace = 0, rel = 0x2729530, pages = 276, tuples = 100000,   tree_height = 1, ncolumns = 1, nkeycolumns = 1, indexkeys = 0x2729998, indexcollations = 0x27299b0, opfamily = 0x27299c8,   opcintype = 0x27299e0, sortopfamily = 0x27299c8, reverse_sort = 0x2729a10, nulls_first = 0x2729a28,   canreturn = 0x27299f8, relam = 403, indexprs = 0x0, indpred = 0x0, indextlist = 0x2729ae0, indrestrictinfo = 0x0,   predOK = false, unique = false, immediate = true, hypothetical = false, amcanorderbyop = false, amoptionalkey = true,   amsearcharray = true, amsearchnulls = true, amhasgettuple = true, amhasgetbitmap = true, amcanparallel = true,   amcostestimate = 0x94f0ad }

查询数据字典pg_class,oid=16750相应的索引是idx_t_jfxx_grbh

testdb=# select relname from pg_class where oid=16750;     relname     ----------------- idx_t_jfxx_grbh(1 row)

调用match_restriction_clauses_to_index和match_join_clauses_to_index,子句集合均为NULL

(gdb) match_restriction_clauses_to_index (rel=0x2729530, index=0x2729888, clauseset=0x7fff69cf0890) at indxpath.c:21172117  }(gdb) create_index_paths (root=0x2714c50, rel=0x2729530) at indxpath.c:275275     get_index_paths(root, rel, index, &rclauseset,(gdb) 284     MemSet(&jclauseset, 0, sizeof(jclauseset));(gdb) 285     match_join_clauses_to_index(root, rel, index,(gdb) 292     MemSet(&eclauseset, 0, sizeof(eclauseset));(gdb) 293     match_eclass_clauses_to_index(root, index,(gdb) p rclauseset$2 = {nonempty = false, indexclauses = {0x0 }}(gdb) p joinorclauses$3 = (List *) 0x0(gdb) p jclauseset$4 = {nonempty = false, indexclauses = {0x0 }}

进入match_eclass_clauses_to_index

...268     match_restriction_clauses_to_index(rel, index, &rclauseset);(gdb) stepmatch_restriction_clauses_to_index (rel=0x2724c88, index=0x27254d8, clauseset=0x7fff69cf0890) at indxpath.c:21162116    match_clauses_to_index(index, index->indrestrictinfo, clauseset);

进入generate_implied_equalities_for_column

...(gdb) stepgenerate_implied_equalities_for_column (root=0x2714c50, rel=0x2729530, callback=0x7509b0 ,     callback_arg=0x7fff69cf0620, prohibited_rels=0x0) at equivclass.c:22192219    List     *result = NIL;

等价类信息

...2235      EquivalenceClass *cur_ec = (EquivalenceClass *) lfirst(lc1);(gdb) 2243      if (cur_ec->ec_has_const || list_length(cur_ec->ec_members) <= 1)(gdb) p *cur_ec$6 = {type = T_EquivalenceClass, ec_opfamilies = 0x272a268, ec_collation = 100, ec_members = 0x272a4a8,   ec_sources = 0x272a3f0, ec_derives = 0x272d2f0, ec_relids = 0x272a470, ec_has_const = false, ec_has_volatile = false,   ec_below_outer_join = false, ec_broken = false, ec_sortref = 0, ec_min_security = 0, ec_max_security = 0, ec_merged = 0x0}

遍历EC的成员后,cur_em不为NULL,查看cur_em内存结构(匹配的成员,即t_jfxx.grbh)

2281      foreach(lc2, cur_ec->ec_members)(gdb) p *cur_em$7 = {type = T_EquivalenceMember, em_expr = 0x2722890, em_relids = 0x272a238, em_nullable_relids = 0x0,   em_is_const = false, em_is_child = false, em_datatype = 25}(gdb) p *cur_em->em_expr$8 = {type = T_RelabelType}(gdb) p *(RelabelType *)cur_em->em_expr$9 = {xpr = {type = T_RelabelType}, arg = 0x2722840, resulttype = 25, resulttypmod = -1, resultcollid = 100,   relabelformat = COERCE_IMPLICIT_CAST, location = -1}(gdb) p *((RelabelType *)cur_em->em_expr)->arg$10 = {type = T_Var}(gdb) p *(Var *)((RelabelType *)cur_em->em_expr)->arg$11 = {xpr = {type = T_Var}, varno = 4, varattno = 1, vartype = 1043, vartypmod = 14, varcollid = 100, varlevelsup = 0,   varnoold = 4, varoattno = 1, location = 168}

再次遍历等价类的成员,得到第一个约束条件(t_jfxx.grbh=t_grxx.grbh)

(gdb) n2314        rinfo = create_join_clause(root, cur_ec, eq_op,(gdb) 2318        result = lappend(result, rinfo);(gdb) p *rinfo$18 = {type = T_RestrictInfo, clause = 0x272d910, is_pushed_down = true, outerjoin_delayed = false, can_join = true,   pseudoconstant = false, leakproof = false, security_level = 0, clause_relids = 0x272db10, required_relids = 0x272d5f0,   outer_relids = 0x0, nullable_relids = 0x0, left_relids = 0x272dae0, right_relids = 0x272daf8, orclause = 0x0,   parent_ec = 0x272a340, eval_cost = {startup = 0, per_tuple = 0.0025000000000000001}, norm_selec = -1, outer_selec = -1,   mergeopfamilies = 0x272db48, left_ec = 0x272a340, right_ec = 0x272a340, left_em = 0x272a4d8, right_em = 0x272a420,   scansel_cache = 0x0, outer_is_left = false, hashjoinoperator = 98, left_bucketsize = -1, right_bucketsize = -1,   left_mcvfreq = -1, right_mcvfreq = -1}(gdb) set $tmp1=(RelabelType *)((OpExpr *)rinfo->clause)->args->head->data.ptr_value(gdb) set $tmp2=(RelabelType *)((OpExpr *)rinfo->clause)->args->head->next->data.ptr_value(gdb) p *(Var *)$tmp1->arg$31 = {xpr = {type = T_Var}, varno = 4, varattno = 1, vartype = 1043, vartypmod = 14, varcollid = 100, varlevelsup = 0,   varnoold = 4, varoattno = 1, location = 168}(gdb) p *(Var *)$tmp2->arg$32 = {xpr = {type = T_Var}, varno = 3, varattno = 2, vartype = 1043, vartypmod = 14, varcollid = 100, varlevelsup = 0,   varnoold = 3, varoattno = 2, location = 158}

获得了结果,返回到match_eclass_clauses_to_index

2281      foreach(lc2, cur_ec->ec_members)(gdb) 2326      if (result)(gdb) 2327        break;(gdb) 2330    return result;(gdb) 2331  }(gdb) match_eclass_clauses_to_index (root=0x2714c50, index=0x2729888, clauseset=0x7fff69cf0670) at indxpath.c:21842184      match_clauses_to_index(index, clauses, clauseset);...

下面再考察t_grxx.dwbh上的索引为例,分析match_clause_to_index

(gdb) cContinuing.Breakpoint 1, create_index_paths (root=0x2714c50, rel=0x2728c38) at indxpath.c:242242   if (rel->indexlist == NIL)(gdb) p *(IndexOptInfo *)rel->indexlist->head->data.ptr_value$39 = {type = T_IndexOptInfo, indexoid = 16752, reltablespace = 0, rel = 0x2728c38, pages = 276, tuples = 100000,   tree_height = 1, ncolumns = 1, nkeycolumns = 1, indexkeys = 0x2729378, indexcollations = 0x2729390, opfamily = 0x27293a8,   opcintype = 0x27293c0, sortopfamily = 0x27293a8, reverse_sort = 0x27293f0, nulls_first = 0x2729408,   canreturn = 0x27293d8, relam = 403, indexprs = 0x0, indpred = 0x0, indextlist = 0x27294e0, indrestrictinfo = 0x272b040,   predOK = false, unique = false, immediate = true, hypothetical = false, amcanorderbyop = false, amoptionalkey = true,   amsearcharray = true, amsearchnulls = true, amhasgettuple = true, amhasgetbitmap = true, amcanparallel = true,   amcostestimate = 0x94f0ad }

oid=16752,对应的object为idx_t_grxx_dwbh

testdb=# select relname from pg_class where oid=16752;     relname     ----------------- idx_t_grxx_dwbh(1 row)

进入IndexOptInfo循环,第一个元素对应的IndexOptInfo为idx_t_grxx_dwbh

249   foreach(lc, rel->indexlist)(gdb) p *rel->indexlist$40 = {type = T_List, length = 2, head = 0x2729510, tail = 0x2729218}(gdb) p *(IndexOptInfo *)rel->indexlist->head->data->ptr_value$42 = {type = T_IndexOptInfo, indexoid = 16752, reltablespace = 0, rel = 0x2728c38, pages = 276, tuples = 100000,   tree_height = 1, ncolumns = 1, nkeycolumns = 1, indexkeys = 0x2729378, indexcollations = 0x2729390, opfamily = 0x27293a8,   opcintype = 0x27293c0, sortopfamily = 0x27293a8, reverse_sort = 0x27293f0, nulls_first = 0x2729408,   canreturn = 0x27293d8, relam = 403, indexprs = 0x0, indpred = 0x0, indextlist = 0x27294e0, indrestrictinfo = 0x272b040,   predOK = false, unique = false, immediate = true, hypothetical = false, amcanorderbyop = false, amoptionalkey = true,   amsearcharray = true, amsearchnulls = true, amhasgettuple = true, amhasgetbitmap = true, amcanparallel = true,   amcostestimate = 0x94f0ad }

一路小跑,进入match_clause_to_indexcol

...(gdb) stepmatch_clause_to_indexcol (index=0x2729268, indexcol=0, rinfo=0x272ae58) at indxpath.c:23302330    Expr     *clause = rinfo->clause;(gdb) n2331    Index   index_relid = index->rel->relid;(gdb) n2344    opfamily = index->opfamily[indexcol];(gdb) 2345    idxcollation = index->indexcollations[indexcol];(gdb) p index_relid$47 = 3(gdb) p opfamily$48 = 1994(gdb)

根据opfamily查询数据字典

testdb=# select * from pg_opfamily where oid=1994; opfmethod | opfname  | opfnamespace | opfowner -----------+----------+--------------+----------       403 | text_ops |           11 |       10(1 row)-- 索引访问方法(btree)testdb=# select * from pg_am where oid=403; amname | amhandler | amtype --------+-----------+-------- btree  | bthandler | i(1 row)

下面进入is_opclause判断分支

(gdb) p idxcollation$49 = 100(gdb) n2360    if (is_opclause(clause))(gdb) 2362      leftop = get_leftop(clause);(gdb) 2363      rightop = get_rightop(clause);(gdb) 2364      if (!leftop || !rightop)(gdb) p *leftop$50 = {type = T_RelabelType}(gdb) p *rightop$51 = {type = T_Const}

限制条件下推后,形成限制条件t_grxx.dwbh = '1001'

#Var:t_grxx.dwbh(gdb) p *(RelabelType *)leftop$56 = {xpr = {type = T_RelabelType}, arg = 0x272ad80, resulttype = 25, resulttypmod = -1, resultcollid = 100,   relabelformat = COERCE_IMPLICIT_CAST, location = -1}#常量:'1001'(gdb) p *(Const *)rightop$57 = {xpr = {type = T_Const}, consttype = 25, consttypmod = -1, constcollid = 100, constlen = -1, constvalue = 41069848,   constisnull = false, constbyval = false, location = 194}

执行相关判断,返回T

(gdb) n2366      left_relids = rinfo->left_relids;(gdb) 2367      right_relids = rinfo->right_relids;(gdb) 2368      expr_op = ((OpExpr *) clause)->opno;(gdb) 2369      expr_coll = ((OpExpr *) clause)->inputcollid;(gdb) 2370      plain_op = true;(gdb) 2409    if (match_index_to_operand(leftop, indexcol, index) &&(gdb) 2410      !bms_is_member(index_relid, right_relids) &&(gdb) 2409    if (match_index_to_operand(leftop, indexcol, index) &&(gdb) 2411      !contain_volatile_functions(rightop))(gdb) 2410      !bms_is_member(index_relid, right_relids) &&(gdb) 2413      if (IndexCollMatchesExprColl(idxcollation, expr_coll) &&(gdb) 2414        is_indexable_operator(expr_op, opfamily, true))(gdb) 2413      if (IndexCollMatchesExprColl(idxcollation, expr_coll) &&(gdb) 2415        return true;

给clauseset变量赋值

(gdb) match_clause_to_index (index=0x2729268, rinfo=0x272ae58, clauseset=0x7fff69cf0890) at indxpath.c:22552255          list_append_unique_ptr(clauseset->indexclauses[indexcol],(gdb) 2254        clauseset->indexclauses[indexcol] =(gdb) 2257        clauseset->nonempty = true;(gdb) 2258        return;(gdb) 2261  }

返回到match_clauses_to_index

(gdb) match_clauses_to_index (index=0x2729268, clauses=0x272b040, clauseset=0x7fff69cf0890) at indxpath.c:22002200    foreach(lc, clauses)

到此,关于"PostgreSQL中set_base_rel_pathlists函数有什么作用"的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注网站,小编会继续努力为大家带来更多实用的文章!

0