python3怎么实现Dijkstra算法最短路径
今天小编给大家分享一下python3怎么实现Dijkstra算法最短路径的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。
问题描述
问题:根据每条边的权值,求出从起点s到其他每个顶点的最短路径和最短路径的长度。
说明:不考虑权值为负的情况,否则会出现负值圈问题。
s:起点
v:算法当前分析处理的顶点
w:与v邻接的顶点
d v d_v dv:从s到v的距离
d w d_w dw:从s到w的距离
c v , w c_{v,w} cv,w:顶点v到顶点w的边的权值
问题分析
Dijkstra算法按阶段进行,同无权最短路径算法(先对距离为0的顶点处理,再对距离为1的顶点处理,以此类推)一样,都是先找距离最小的。 现在我们能找到起点 v 1 v_1 v1到任意的 v i v_i vi(除了起点)的最短路径,及其最短路径长。 比如,找到 v 1 v_1 v1到 v 3 v_3 v3的最短路径。 纸上得来终觉浅,绝知此事要躬行!使用python3来实现功能。 意思,Vertex实例并不支持小于比较运算符。所以需要实现Vertex类的 但很遗憾,python库自带的优先队列 或者说,我们想要的优先队列肯定不是系统提供的优先队列,因为我们要支持可变对象的成员修改导致堆的改变,解决方案有三种,1.内部使用的堆排序的堆,最起码要支持,删除任意节点和增加节点操作(因为这两步就可以达到修改的效果了)2.这个内部堆,在执行出队操作时,考察哪个节点有修改操作,再把堆改变到正确的形态,再出队3.维护一个list,进行排降序,然后每改变一个可变对象的值,就对这个对象进行冒泡或者二分查找找到位置(因为别的都是已经排好序的了,只有它不在正确的位置),最后再list.pop(),但第三个方案是我后来想到的,所以下面代码并不是这样实现的,读者可以进行尝试,肯定比每次遍历全部快。 应该说,可能用不上队列了。我们可能只需要一个list或者set来存储v,在出队前随便vi改变其dist,在出队时再遍历找到最小的dist的vi,再删除掉这个vi即可。因为vi的dist一直在变,需求特殊,但是没必要专门造个轮子(感觉这个轮子也不好造),虽然时间复杂度可能高了点,但代码简单了啊。 失效代码如下:三个节点对象的dist都是无穷大,在三个对象都进入队列,再把v3的dist改成0,想要的效果是出队出v3,但出队出的是v1。原因如上: 而如果将在入队前,就把dist改变了,就能正确的出队。 运行结果与数据变化表的最终情况一致。 把以下代码和以上代码合起来就可以运行成功,使用递归的思想来做: 从v1到v3的最短路径为:[1, 4, 3] Dijkstra算法要求边上的权值不能为负数,不然就会出错。如上,本来最短路径是012,但由于算法是贪心的,所以只会直接选择到2 注意,只有有向无圈图才有拓扑排序。 如果知道图是无圈图,那么我们可以通过改变声明顶点为known的顺序(原本这个顺序是,每次从unknown里面找出个最小dist的顶点),或者叫做顶点选取法则,来改进Dijkstra算法。新法则以拓扑排序选择顶点。由于选择和更新(每次选择和更新完成后,就会变成数据变化表中的某一种情况)可以在拓扑排序执行的时候进行,因此算法能一趟完成。 因为当一个顶点v被选取以后,按照拓扑排序的法则它肯定没有任何unknown顶点到v(指明方向)的入边,因为v的距离 d v d_v dv不可能再下降了(因为根本没有别的路到v了),所以这种选择方法是可行的。 使用这种方法不需要优先队列。 以上就是"python3怎么实现Dijkstra算法最短路径"这篇文章的所有内容,感谢各位的阅读!相信大家阅读完这篇文章都有很大的收获,小编每天都会为大家更新不同的知识,如果还想学习更多的知识,请关注行业资讯频道。
在每个阶段,Dijkstra算法选择一个顶点v,它在所有unknown顶点中具有最小的 d v d_v dv,同时算法声明从s到v的最短路径是known的。阶段的其余部分为,对w的 d v d_v dv(距离)和 p v p_v pv(上一个顶点)更新工作(当然也可能不更新)。
在算法的每个阶段,都是这样处理的:
【0.5】在无权的情况下,若 d w d_w dw= ∞ infty ∞则置 d w = d v + 1 d_w=d_v+1 dw=dv+1(无权最短路径)
【1】在有权的情况下,若 d w d_w dw= ∞ infty ∞则置 d w = d v + c v , w d_w=d_v+c_{v,w} dw=dv+cv,w
【2】若 d w d_w dw!= ∞ infty ∞,开始分析:从顶点v到顶点w的路径,若能使得w的路径长比w原来的路径长短一点,那么就需要对w进行更新,否则不对w更新。即满足 d v + c v , w < d w d_v+c_{v,w}<d_w dv+cv,w如何使用数据变化表
【1】 v 3 v_3 v3的 d v d_v dv值为3,所以最短路径长为3
【2】 v 3 v_3 v3的 p v p_v pv值为 v 4 v_4 v4,所以 v 3 v_3 v3的上一个顶点为 v 4 v_4 v4
【3】到代表 v 4 v_4 v4的第四行,发现 v 4 v_4 v4的 p v p_v pv值为 v 1 v_1 v1,所以 v 4 v_4 v4的上一个顶点为 v 1 v_1 v1
【4】 v 1 v_1 v1是起点,结束。 v 3 v_3 v3上一个是 v 4 v_4 v4, v 4 v_4 v4上一个是 v 1 v_1 v1,反过来就得到了最短路径 v 1 = > v 4 = > v 3 v_1=>v_4=>v_3 v1=>v4=>v3
上述分析,其实就是求最短路径的算法的思想:在对每个顶点对象进行处理后变成数据变化表的最终情况后,可以通过对任意顶点 v i v_i vi的 p v p_v pv值,回溯得到反转的最短路径。代码实现
本文提到,将使用优先队列来实现寻找未知顶点中,具有最小dist的顶点。使用python已有实现好的优先队列。但实验中报错如下:__lt__
方法。下面科普一下:方法名 比较运算符 含义 __eq__
== equal __lt__
< less than __le__
<= less and equal __gt__
> greater than __ge__
>= greater and equal from queue import PriorityQueue
,并不满足本文的需求。当PriorityQueue的元素为对象时,需要该对象的class实现__lt__函数,在往优先队列里添加元素时,内部是用的堆排序,堆排序的特点为每个堆(以及每个子堆)的第一个元素总是那个最小的元素。关键在于,在建立了这个堆后,堆就已经记录下来了创建堆时各个元素的大小关系了,在创建优先队列后,再改变某个对象的值,这个堆的结构是肯定不会变的,所以这种堆排序造成了排序是一次性的,如果之后某个对象的属性发生变化,堆的结构也不会随之而改变。优先队列中的堆排序
from queue import PriorityQueueclass Vertex: #顶点类 def __init__(self,vid,dist): self.vid = vid self.dist = dist def __lt__(self,other): return self.dist < other.dist v1=Vertex(1,float('inf'))v2=Vertex(2,float('inf'))v3=Vertex(3,float('inf'))vlist = [v1,v2,v3]q = PriorityQueue()for i in range(0,len(vlist)): q.put(vlist[i])v3.dist = 0print('vid:',q.get().vid)#结果为vid: 1
v3.dist = 0for i in range(0,len(vlist)): q.put(vlist[i])#结果为vid: 3
使用set代替优先队列
class Vertex: #顶点类 def __init__(self,vid,outList): self.vid = vid#出边 self.outList = outList#出边指向的顶点id的列表,也可以理解为邻接表 self.know = False#默认为假 self.dist = float('inf')#s到该点的距离,默认为无穷大 self.prev = 0#上一个顶点的id,默认为0 def __eq__(self, other): if isinstance(other, self.__class__): return self.vid == other.vid else: return False def __hash__(self): return hash(self.vid)#创建顶点对象v1=Vertex(1,[2,4])v2=Vertex(2,[4,5])v3=Vertex(3,[1,6])v4=Vertex(4,[3,5,6,7])v5=Vertex(5,[7])v6=Vertex(6,[])v7=Vertex(7,[6])#存储边的权值edges = dict()def add_edge(front,back,value): edges[(front,back)]=valueadd_edge(1,2,2)add_edge(1,4,1)add_edge(3,1,4)add_edge(4,3,2)add_edge(2,4,3)add_edge(2,5,10)add_edge(4,5,2)add_edge(3,6,5)add_edge(4,6,8)add_edge(4,7,4)add_edge(7,6,1)add_edge(5,7,6)#创建一个长度为8的数组,来存储顶点,0索引元素不存vlist = [False,v1,v2,v3,v4,v5,v6,v7]#使用set代替优先队列,选择set主要是因为set有方便的remove方法vset = set([v1,v2,v3,v4,v5,v6,v7])def get_unknown_min():#此函数则代替优先队列的出队操作 the_min = 0 the_index = 0 j = 0 for i in range(1,len(vlist)): if(vlist[i].know is True): continue else: if(j==0): the_min = vlist[i].dist the_index = i else: if(vlist[i].dist < the_min): the_min = vlist[i].dist the_index = i j += 1 #此时已经找到了未知的最小的元素是谁 vset.remove(vlist[the_index])#相当于执行出队操作 return vlist[the_index]def main(): #将v1设为顶点 v1.dist = 0 while(len(vset)!=0): v = get_unknown_min() print(v.vid,v.dist,v.outList) v.know = True for w in v.outList:#w为索引 if(vlist[w].know is True): continue if(vlist[w].dist == float('inf')): vlist[w].dist = v.dist + edges[(v.vid,w)] vlist[w].prev = v.vid else: if((v.dist + edges[(v.vid,w)])
得到最短路径
def real_get_traj(start,index): traj_list = [] def get_traj(index):#参数是顶点在vlist中的索引 if(index == start):#终点 traj_list.append(index) print(traj_list[::-1])#反转list return if(vlist[index].dist == float('inf')): print('从起点到该顶点根本没有路径') return traj_list.append(index) get_traj(vlist[index].prev) get_traj(index) print('该最短路径的长度为',vlist[index].dist)real_get_traj(1,3)real_get_traj(1,6)
从v1到v6的最短路径为:[1, 4, 7, 6]负权边
算法改进(若为无圈图)