怎么进行Spark Streaming 原理剖析
本篇文章给大家分享的是有关怎么进行Spark Streaming 原理剖析,小编觉得挺实用的,因此分享给大家学习,希望大家阅读完这篇文章后可以有所收获,话不多说,跟着小编一起来看看吧。
一:初始化与接收数据。
Spark Streaming 通过分布在各个节点上的接收器,缓存接收到的数据,并将数据包装成Spark能够处理的RDD的格式,输入到Spark Streaming,之后由Spark Streaming将作业提交到Spark集群进行执行,如下图:
初始化的过程主要可以概括为两点。即:
1. 调度器的初始化。
调度器调度Spark Streaming的运行,用户可以通过配置相关参数进行调优。
2. 将输入流的接收器转化为Spark能够处理的RDD格式,并在集群进行分布式分配,然后启动接收器集合中的每个接收器。
针对不同的数据源,Spark Streaming提供了不同的数据接收器,分布在各个节点上的每个接收器可以认为是一个特定的进程,接收一部分流数据作为输入。
首先,先看看JavaStreamingContext的部分源码,说明能够接收一个Socket文本数据,也可以把文件当做输入流作为数据源,如下:
class JavaStreamingContext(val ssc: StreamingContext) extends Closeable { def this(master: String, appName: String, batchDuration: Duration) = this(new StreamingContext(master, appName, batchDuration, null, Nil, Map())) def socketTextStream(hostname: String, port: Int): JavaReceiverInputDStream[String] = { ssc.socketTextStream(hostname, port) } def textFileStream(directory: String): JavaDStream[String] = { ssc.textFileStream(directory) }}
eg:完成以下代码的时候:
val lines = ssc.socketTextStream("master", 9999)
这样可以从socket接收文本数据,而其返回的是JavaReceiverInputDStream,它是ReceiverInputDStream的一个实现,内含Receiver,可接收数据,并转化为Spark能处理的RDD数据。
在来看看JavaReceiverInputDStream中的部分源码:
class JavaReceiverInputDStream[T](val receiverInputDStream: ReceiverInputDStream[T]) (implicit overrideval classTag: ClassTag[T]) extends JavaInputDStream[T](receiverInputDStream) {}object JavaReceiverInputDStream { implicit def fromReceiverInputDStream[T: ClassTag]( receiverInputDStream: ReceiverInputDStream[T]): JavaReceiverInputDStream[T] = { new JavaReceiverInputDStream[T](receiverInputDStream) }}
通过源码了解JavaReceiverInputDStream是ReceiverInputDStream的一个实现,内含Receiver,可接收数据,并转化为RDD 数据,其部分源码如下:(注意英文注释)
abstract class ReceiverInputDStream[T: ClassTag](ssc_ : StreamingContext) extends InputDStream[T](ssc_) { /** * Gets the receiver object that will be sent to the worker nodes * to receive data. This method needs to defined by any specific implementation * of a ReceiverInputDStream. */ def getReceiver(): Receiver[T] // Nothing to start or stop as both taken care of by the ReceiverTracker. def start() {} /** * Generates RDDs with blocks received by the receiver of this stream. */ override def compute(validTime: Time): Option[RDD[T]] = { val blockRDD = { if (validTime < graph.startTime) { new BlockRDD[T](ssc.sc, Array.empty) } else { // Otherwise, ask the tracker for all the blocks that have been allocated to this stream // for this batch val receiverTracker = ssc.scheduler.receiverTracker val blockInfos = receiverTracker.getBlocksOfBatch(validTime).getOrElse(id, Seq.empty) // Register the input blocks information into InputInfoTracker val inputInfo = StreamInputInfo(id, blockInfos.flatMap(_.numRecords).sum) ssc.scheduler.inputInfoTracker.reportInfo(validTime, inputInfo) // Create the BlockRDD createBlockRDD(validTime, blockInfos) } } Some(blockRDD) }}
当调用 getReceiver()时候,过程如下:(SocketInputDStream的部分源码)
private[streaming]class SocketInputDStream[T: ClassTag]( ssc_ : StreamingContext, host: String, port: Int, bytesToObjects: InputStream => Iterator[T], storageLevel: StorageLevel ) extends ReceiverInputDStream[T](ssc_) { def getReceiver(): Receiver[T] = { new SocketReceiver(host, port, bytesToObjects, storageLevel) }}
而其实际上是 new 了一个SocketReceiver对象,并将之前的参数给传递进来,实现如下:
private[streaming]class SocketReceiver[T: ClassTag]( host: String, port: Int, bytesToObjects: InputStream => Iterator[T], storageLevel: StorageLevel ) extends Receiver[T](storageLevel) with Logging { def onStart() { // Start the thread that receives data over a connection new Thread("Socket Receiver") { setDaemon(true) override def run() { receive() } }.start() } /** Create a socket connection and receive data until receiver is stopped */ def receive() { var socket: Socket = null try { logInfo("Connecting to " + host + ":" + port) socket = new Socket(host, port) logInfo("Connected to " + host + ":" + port) val iterator = bytesToObjects(socket.getInputStream()) while(!isStopped && iterator.hasNext) { store(iterator.next) } if (!isStopped()) { restart("Socket data stream had no more data") } else { logInfo("Stopped receiving") } } catch { //... } }}
对于子类实现这个方法,worker节点调用后能得到Receiver,使得数据接收的工作能分布到worker上。
接收器分布在各个节点上,如下:
二:数据接收与转化
在上述"初始化与接收数据"步骤中,简单介绍了receiver集合转化为RDD,在集群上分布式地接收数据流,那么接下来将简单了解receiver是怎样接收并处理数据流。大致流程如下图:
Receiver提供了一系列store()接口,eg:(更多请查看源码)
abstract class Receiver[T](val storageLevel: StorageLevel) extends Serializable { def store(dataItem: T) { supervisor.pushSingle(dataItem) } /** Store an ArrayBuffer of received data as a data block into Spark's memory. */ def store(dataBuffer: ArrayBuffer[T]) { supervisor.pushArrayBuffer(dataBuffer, None, None) }}
对于这些接口,已经是实现好了的,会由worker节点上初始化的ReceiverSupervisor来完成这些存储功能。ReceiverSupervisor还会对Receiver做监控,如监控是否启动了、是否停止了、是否要重启、汇报error等等。部分ReceiverSupervisor如下:
def createBlockGenerator(blockGeneratorListener: BlockGeneratorListener): BlockGenerator
private[streaming] abstract class ReceiverSupervisor( receiver: Receiver[_], conf: SparkConf ) extends Logging { /** Push a single data item to backend data store. */ def pushSingle(data: Any) /** Store an ArrayBuffer of received data as a data block into Spark's memory. */ def pushArrayBuffer( arrayBuffer: ArrayBuffer[_], optionalMetadata: Option[Any], optionalBlockId: Option[StreamBlockId] ) /** * Create a custom [[BlockGenerator]] that the receiver implementation can directly control * using their provided [[BlockGeneratorListener]]. * * Note: Do not explicitly start or stop the `BlockGenerator`, the `ReceiverSupervisorImpl` * will take care of it. */ def createBlockGenerator(blockGeneratorListener: BlockGeneratorListener): BlockGenerator /** Start receiver */ def startReceiver(): Unit = synchronized { //... }}
ReceiverSupervisor的存储接口的实现,借助的是BlockManager,数据会以RDD的形式被存放,根据StorageLevel选择不同存放策略。默认是序列化后存内存,放不下的话写磁盘(executor)。被计算出来的RDD中间结果,默认存放策略是序列化后只存内存。
最根本原因是store函数内部的实现是调用了BlockGenerator的addData方法,最终是将数据存储在currentBuffer中,而currentBuffer其实就是一个ArrayBuffer[Any]。
BlockGenerator的 addData方法 源码如下: currentBuffer += data
/** * Push a single data item into the buffer. */ def addData(data: Any): Unit = { if (state == Active) { waitToPush() synchronized { if (state == Active) { currentBuffer += data } else { throw new SparkException( "Cannot add data as BlockGenerator has not been started or has been stopped") } } } else { throw new SparkException( "Cannot add data as BlockGenerator has not been started or has been stopped") } }
而如何将缓冲数据转化为数据块呢?
其实在BlockGenerator内部存在两个线程:
(1)、定期地生成新的batch,然后再将之前生成的batch封装成block。这里的定期其实就是spark.streaming.blockInterval
参数配置的,默认是200ms。源码如下:
privateval blockIntervalMs = conf.getTimeAsMs("spark.streaming.blockInterval", "200ms")
(2)、将生成的block发送到Block Manager中。
第一个线程:
第一个线程定期地调用updateCurrentBuffer
函数将存储在currentBuffer
中的数据封装成Block,至于块是如何产生的,即在 BlockGenerator中有一个定时器(RecurringTimer),将当前缓冲区中的数据以用户定义的时间间隔封装为一个数据块Block。源码如下:
privateval blockIntervalTimer = new RecurringTimer(clock, blockIntervalMs, updateCurrentBuffer, "BlockGenerator")
然后将一批记录转化为的一个数据块放在blocksForPushing中,blocksForPushing是ArrayBlockingQueue[Block]类型的队列。源码如下:
privateval blockQueueSize = conf.getInt("spark.streaming.blockQueueSize", 10) privateval blocksForPushing = new ArrayBlockingQueue[Block](blockQueueSize)
其大小默认是10,我们可以通过spark.streaming.blockQueueSize
参数配置(当然,在很多情况下这个值不需要我们去配置)。当blocksForPushing没有多余的空间,那么该线程就会阻塞,直到有剩余的空间可用于存储新生成的Block。如果你的数据量真的很大,大到blocksForPushing无法及时存储那些block,这时候你就得考虑加大spark.streaming.blockQueueSize
的大小了。
updateCurrentBuffer函数实现如下源码:
/** Change the buffer to which single records are added to. */ private def updateCurrentBuffer(time: Long): Unit = { try { var newBlock: Block = null synchronized { if (currentBuffer.nonEmpty) { val newBlockBuffer = currentBuffer currentBuffer = new ArrayBuffer[Any] val blockId = StreamBlockId(receiverId, time - blockIntervalMs) listener.onGenerateBlock(blockId) newBlock = new Block(blockId, newBlockBuffer) } } if (newBlock != null) { blocksForPushing.put(newBlock) // put is blocking when queue is full } } catch { case ie: InterruptedException => logInfo("Block updating timer thread was interrupted") case e: Exception => reportError("Error in block updating thread", e) } }
第二个线程:
第二个线程不断地调用keepPushingBlocks函数从blocksForPushing阻塞队列中获取生成的Block,然后调用pushBlock方法将Block存储到BlockManager中。
privateval blockPushingThread = new Thread() { override def run() { keepPushingBlocks() } }
keepPushingBlocks实现源码如下:
/** Keep pushing blocks to the BlockManager. */ private def keepPushingBlocks() { logInfo("Started block pushing thread") def areBlocksBeingGenerated: Boolean = synchronized { state != StoppedGeneratingBlocks } try { // While blocks are being generated, keep polling for to-be-pushed blocks and push them. while (areBlocksBeingGenerated) { Option(blocksForPushing.poll(10, TimeUnit.MILLISECONDS)) match { case Some(block) => pushBlock(block) case None => } } // At this point, state is StoppedGeneratingBlock. So drain the queue of to-be-pushed blocks. logInfo("Pushing out the last " + blocksForPushing.size() + " blocks") while (!blocksForPushing.isEmpty) { val block = blocksForPushing.take() logDebug(s"Pushing block $block") pushBlock(block) logInfo("Blocks left to push " + blocksForPushing.size()) } logInfo("Stopped block pushing thread") } catch { case ie: InterruptedException => logInfo("Block pushing thread was interrupted") case e: Exception => reportError("Error in block pushing thread", e) } }
pushBlock实现源码如下:
private def pushBlock(block: Block) { listener.onPushBlock(block.id, block.buffer) logInfo("Pushed block " + block.id) }
当存储到BlockManager中后,会返回一个BlcokStoreResult结果,这就是成功存储到BlockManager的StreamBlcokId。
然后下一步就是将BlcokStoreResult封装成ReceivedBlockInfo,这也就是最新的未处理过的数据,然后通过Akka告诉ReceiverTracker有新的块加入,ReceiverTracker 会调用addBlock方法将ReceivedBlockInfo存储到streamIdToUnallocatedBlockQueues队列中。
ReceiverTracker会将存储的blockId放到对应StreamId的队列中。(HashMap)
privateval receiverTrackingInfos = new HashMap[Int, ReceiverTrackingInfo]
receiverTrackingInfos.put(streamId, receiverTrackingInfo)
ReceiverTracker中addBlock方法源码的实现如下:
private def addBlock(receivedBlockInfo: ReceivedBlockInfo): Boolean = { receivedBlockTracker.addBlock(receivedBlockInfo) }
ReceivedBlockInfo源码实现如下:
def blockId: StreamBlockId = blockStoreResult.blockId
/** Information about blocks received by the receiver */private[streaming] case class ReceivedBlockInfo( streamId: Int, numRecords: Option[Long], metadataOption: Option[Any], blockStoreResult: ReceivedBlockStoreResult ) { require(numRecords.isEmpty || numRecords.get >= 0, "numRecords must not be negative") @volatile private var _isBlockIdValid = true def blockId: StreamBlockId = blockStoreResult.blockId}
最后看看 ReceivedBlockStoreResult 的部分源码:
private[streaming] trait ReceivedBlockStoreResult { // Any implementation of this trait will store a block id def blockId: StreamBlockId // Any implementation of this trait will have to return the number of records def numRecords: Option[Long]}
三:生成RDD与提交Spark Job
Spark Streaming 根据时间段,将数据切分为 RDD,然后触发 RDD 的 Action 提
交 Job, Job 被 提 交 到 Job Manager 中 的 Job Queue 中 由 JobScheduler 调 度, 之 后
Job Scheduler 将 Job 提交到 Spark 的 Job 调度器,然后将 Job 转换为大量的任务分
发给 Spark 集群执行,
然后接下来了解下JobScheduler的源码:
JobScheduler是整个Spark Streaming调度的核心组件。
部分源码:
def submitJobSet(jobSet: JobSet) { if (jobSet.jobs.isEmpty) { logInfo("No jobs added for time " + jobSet.time) } else { listenerBus.post(StreamingListenerBatchSubmitted(jobSet.toBatchInfo)) jobSets.put(jobSet.time, jobSet) jobSet.jobs.foreach(job => jobExecutor.execute(new JobHandler(job))) logInfo("Added jobs for time " + jobSet.time) } }
进入Graph生成job的方法,Graph本质是DStreamGraph类生成的对象,部分源码如下:
final private[streaming] class DStreamGraph extends Serializable with Logging { privateval inputStreams = new ArrayBuffer[InputDStream[_]]() privateval outputStreams = new ArrayBuffer[DStream[_]]() def generateJobs(time: Time): Seq[Job] = { logDebug("Generating jobs for time " + time) val jobs = this.synchronized { outputStreams.flatMap { outputStream => val jobOption = outputStream.generateJob(time) jobOption.foreach(_.setCallSite(outputStream.creationSite)) jobOption } } logDebug("Generated " + jobs.length + " jobs for time " + time) jobs }}
outputStreaming中的对象是DStream,看下DStream的generateJob:
此处相当于针对每个时间段生成一个RDD,会调用SparkContext的方法runJob提交Spark的一个Job。
private[streaming] def generateJob(time: Time): Option[Job] = { getOrCompute(time) match { case Some(rdd) => { val jobFunc = () => { val emptyFunc = { (iterator: Iterator[T]) => {} } context.sparkContext.runJob(rdd, emptyFunc) } Some(new Job(time, jobFunc)) } case None => None } }
以上就是怎么进行Spark Streaming 原理剖析,小编相信有部分知识点可能是我们日常工作会见到或用到的。希望你能通过这篇文章学到更多知识。更多详情敬请关注行业资讯频道。