千家信息网

TensorFlow2之Fashion Mnist的示例分析

发表于:2025-01-18 作者:千家信息网编辑
千家信息网最后更新 2025年01月18日,这篇文章主要介绍了TensorFlow2之Fashion Mnist的示例分析,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。描述Fas
千家信息网最后更新 2025年01月18日TensorFlow2之Fashion Mnist的示例分析

这篇文章主要介绍了TensorFlow2之Fashion Mnist的示例分析,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。

描述

Fashion Mnist 是一个类似于 Mnist 的图像数据集. 涵盖 10 种类别的 7 万 (6 万训练集 + 1 万测试集) 个不同商品的图片.

Tensorboard

Tensorboard 是 tensorflow 的一个可视化工具.

创建 summary

我们可以通过tf.summary.create_file_writer(file_path)来创建一个新的 summary 实例.

例子:

# 将当前时间作为子文件名current_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")# 监听的文件的路径log_dir = 'logs/' + current_time# 创建writersummary_writer = tf.summary.create_file_writer(log_dir)

存入数据

通过tf.summary.scalar我们可以向 summary 对象存入数据.

格式:

tf.summary.scalar(    name, data, step=None, description=None)

例子:

with summary_writer.as_default():    tf.summary.scalar("train-loss", float(Cross_Entropy), step=step)

metrics

metrics.Mean()

metrics.Mean()可以帮助我们计算平均数.

格式:

tf.keras.metrics.Mean(    name='mean', dtype=None)

例子:

# 准确率表loss_meter = tf.keras.metrics.Mean()

metrics.Accuracy()

格式:

tf.keras.metrics.Accuracy(    name='accuracy', dtype=None)

例子:

# 损失表acc_meter = tf.keras.metrics.Accuracy()

变量更新 &重置

我们可以通过update_state来实现变量更新, 通过rest_state来实现变量重置.

例如:

# 跟新损失loss_meter.update_state(Cross_Entropy)# 重置loss_meter.reset_state()

案例

pre_process 函数

def pre_process(x, y):    """    数据预处理    :param x: 特征值    :param y: 目标值    :return: 返回处理好的x, y    """    # 转换x    x = tf.cast(x, tf.float32) / 255    x = tf.reshape(x, [-1, 784])    # 转换y    y = tf.cast(y, dtype=tf.int32)    y = tf.one_hot(y, depth=10)    return x, y

get_data 函数

def get_data():    """    获取数据    :return: 返回分批完的训练集和测试集    """    # 获取数据    (X_train, y_train), (X_test, y_test) = tf.keras.datasets.fashion_mnist.load_data()    # 分割训练集    train_db = tf.data.Dataset.from_tensor_slices((X_train, y_train)).shuffle(60000, seed=0)    train_db = train_db.batch(batch_size).map(pre_process)    # 分割测试集    test_db = tf.data.Dataset.from_tensor_slices((X_test, y_test)).shuffle(10000, seed=0)    test_db = test_db.batch(batch_size).map(pre_process)    # 返回    return train_db, test_db

train 函数

def train(epoch, train_db):    """    训练数据    :param train_db: 分批的数据集    :return: 无返回值    """    for step, (x, y) in enumerate(train_db):        with tf.GradientTape() as tape:            # 获取模型输出结果            logits = model(x)            # 计算交叉熵            Cross_Entropy = tf.losses.categorical_crossentropy(y, logits, from_logits=True)            Cross_Entropy = tf.reduce_sum(Cross_Entropy)            # 跟新损失            loss_meter.update_state(Cross_Entropy)        # 计算梯度        grads = tape.gradient(Cross_Entropy, model.trainable_variables)        # 跟新参数        optimizer.apply_gradients(zip(grads, model.trainable_variables))        # 每100批调试输出一下误差        if step % 100 == 0:            print("step:", step, "Cross_Entropy:", loss_meter.result().numpy())            # 重置            loss_meter.reset_state()            # 可视化            with summary_writer.as_default():                tf.summary.scalar("train-loss", float(Cross_Entropy), step= epoch * 235 + step)

test 函数

def test(epoch, test_db):    """    测试模型    :param epoch: 轮数    :param test_db: 分批的测试集    :return: 无返回值    """    # 重置    acc_meter.reset_state()    for x, y in test_db:        # 获取模型输出结果        logits = model(x)        # 预测结果        pred = tf.argmax(logits, axis=1)        # 从one_hot编码变回来        y = tf.argmax(y, axis=1)        # 计算准确率        acc_meter.update_state(y, pred)    # 调试输出    print("epoch:", epoch + 1, "Accuracy:", acc_meter.result().numpy() * 100, "%", )    # 可视化    with summary_writer.as_default():        tf.summary.scalar("val-acc", acc_meter.result().numpy(), step=epoch * 235)

main 函数

def main():    """    主函数    :return: 无返回值    """    # 获取数据    train_db, test_db = get_data()    # 轮期    for epoch in range(iteration_num):        train(epoch, train_db)        test(epoch, test_db)

完整代码

import datetimeimport tensorflow as tf# 定义超参数batch_size = 256  # 一次训练的样本数目learning_rate = 0.001  # 学习率iteration_num = 20  # 迭代次数# 优化器optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate)# 准确率表loss_meter = tf.keras.metrics.Mean()# 损失表acc_meter = tf.keras.metrics.Accuracy()# 可视化current_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")log_dir = 'logs/' + current_timesummary_writer = tf.summary.create_file_writer(log_dir)  # 创建writer# 模型model = tf.keras.Sequential([    tf.keras.layers.Dense(256, activation=tf.nn.relu),    tf.keras.layers.Dense(128, activation=tf.nn.relu),    tf.keras.layers.Dense(64, activation=tf.nn.relu),    tf.keras.layers.Dense(32, activation=tf.nn.relu),    tf.keras.layers.Dense(10)])# 调试输出summarymodel.build(input_shape=[None, 28 * 28])print(model.summary())def pre_process(x, y):    """    数据预处理    :param x: 特征值    :param y: 目标值    :return: 返回处理好的x, y    """    # 转换x    x = tf.cast(x, tf.float32) / 255    x = tf.reshape(x, [-1, 784])    # 转换y    y = tf.cast(y, dtype=tf.int32)    y = tf.one_hot(y, depth=10)    return x, ydef get_data():    """    获取数据    :return: 返回分批完的训练集和测试集    """    # 获取数据    (X_train, y_train), (X_test, y_test) = tf.keras.datasets.fashion_mnist.load_data()    # 分割训练集    train_db = tf.data.Dataset.from_tensor_slices((X_train, y_train)).shuffle(60000, seed=0)    train_db = train_db.batch(batch_size).map(pre_process)    # 分割测试集    test_db = tf.data.Dataset.from_tensor_slices((X_test, y_test)).shuffle(10000, seed=0)    test_db = test_db.batch(batch_size).map(pre_process)    # 返回    return train_db, test_dbdef train(epoch, train_db):    """    训练数据    :param train_db: 分批的数据集    :return: 无返回值    """    for step, (x, y) in enumerate(train_db):        with tf.GradientTape() as tape:            # 获取模型输出结果            logits = model(x)            # 计算交叉熵            Cross_Entropy = tf.losses.categorical_crossentropy(y, logits, from_logits=True)            Cross_Entropy = tf.reduce_sum(Cross_Entropy)            # 跟新损失            loss_meter.update_state(Cross_Entropy)        # 计算梯度        grads = tape.gradient(Cross_Entropy, model.trainable_variables)        # 跟新参数        optimizer.apply_gradients(zip(grads, model.trainable_variables))        # 每100批调试输出一下误差        if step % 100 == 0:            print("step:", step, "Cross_Entropy:", loss_meter.result().numpy())            # 重置            loss_meter.reset_state()            # 可视化            with summary_writer.as_default():                tf.summary.scalar("train-loss", float(Cross_Entropy), step=epoch * 235 + step)def test(epoch, test_db):    """    测试模型    :param epoch: 轮数    :param test_db: 分批的测试集    :return: 无返回值    """    # 重置    acc_meter.reset_state()    for x, y in test_db:        # 获取模型输出结果        logits = model(x)        # 预测结果        pred = tf.argmax(logits, axis=1)        # 从one_hot编码变回来        y = tf.argmax(y, axis=1)        # 计算准确率        acc_meter.update_state(y, pred)    # 调试输出    print("epoch:", epoch + 1, "Accuracy:", acc_meter.result().numpy() * 100, "%", )    # 可视化    with summary_writer.as_default():        tf.summary.scalar("val-acc", acc_meter.result().numpy(), step=epoch * 235)def main():    """    主函数    :return: 无返回值    """    # 获取数据    train_db, test_db = get_data()    # 轮期    for epoch in range(iteration_num):        train(epoch, train_db)        test(epoch, test_db)if __name__ == "__main__":    main()

输出结果:

Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
dense (Dense) (None, 256) 200960
_________________________________________________________________
dense_1 (Dense) (None, 128) 32896
_________________________________________________________________
dense_2 (Dense) (None, 64) 8256
_________________________________________________________________
dense_3 (Dense) (None, 32) 2080
_________________________________________________________________
dense_4 (Dense) (None, 10) 330
=================================================================
Total params: 244,522
Trainable params: 244,522
Non-trainable params: 0
_________________________________________________________________
None
2021-06-14 18:01:27.399812: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:176] None of the MLIR Optimization Passes are enabled (registered 2)
step: 0 Cross_Entropy: 591.5974
step: 100 Cross_Entropy: 196.49309
step: 200 Cross_Entropy: 125.2562
epoch: 1 Accuracy: 84.72999930381775 %
step: 0 Cross_Entropy: 107.64579
step: 100 Cross_Entropy: 105.854385
step: 200 Cross_Entropy: 99.545975
epoch: 2 Accuracy: 85.83999872207642 %
step: 0 Cross_Entropy: 95.42945
step: 100 Cross_Entropy: 91.366234
step: 200 Cross_Entropy: 90.84072
epoch: 3 Accuracy: 86.69999837875366 %
step: 0 Cross_Entropy: 82.03317
step: 100 Cross_Entropy: 83.20552
step: 200 Cross_Entropy: 81.57012
epoch: 4 Accuracy: 86.11000180244446 %
step: 0 Cross_Entropy: 82.94046
step: 100 Cross_Entropy: 77.56677
step: 200 Cross_Entropy: 76.996346
epoch: 5 Accuracy: 87.27999925613403 %
step: 0 Cross_Entropy: 75.59219
step: 100 Cross_Entropy: 71.70899
step: 200 Cross_Entropy: 74.15144
epoch: 6 Accuracy: 87.29000091552734 %
step: 0 Cross_Entropy: 76.65844
step: 100 Cross_Entropy: 70.09151
step: 200 Cross_Entropy: 70.84446
epoch: 7 Accuracy: 88.27999830245972 %
step: 0 Cross_Entropy: 67.50707
step: 100 Cross_Entropy: 64.85907
step: 200 Cross_Entropy: 68.63099
epoch: 8 Accuracy: 88.41999769210815 %
step: 0 Cross_Entropy: 65.50318
step: 100 Cross_Entropy: 62.2706
step: 200 Cross_Entropy: 63.80803
epoch: 9 Accuracy: 86.21000051498413 %
step: 0 Cross_Entropy: 66.95486
step: 100 Cross_Entropy: 61.84385
step: 200 Cross_Entropy: 62.18851
epoch: 10 Accuracy: 88.45999836921692 %
step: 0 Cross_Entropy: 59.779297
step: 100 Cross_Entropy: 58.602314
step: 200 Cross_Entropy: 59.837025
epoch: 11 Accuracy: 88.66000175476074 %
step: 0 Cross_Entropy: 58.10068
step: 100 Cross_Entropy: 55.097878
step: 200 Cross_Entropy: 59.906315
epoch: 12 Accuracy: 88.70999813079834 %
step: 0 Cross_Entropy: 57.584858
step: 100 Cross_Entropy: 54.95376
step: 200 Cross_Entropy: 55.797752
epoch: 13 Accuracy: 88.44000101089478 %
step: 0 Cross_Entropy: 53.54782
step: 100 Cross_Entropy: 53.62939
step: 200 Cross_Entropy: 54.632828
epoch: 14 Accuracy: 87.02999949455261 %
step: 0 Cross_Entropy: 54.387398
step: 100 Cross_Entropy: 52.323734
step: 200 Cross_Entropy: 53.968185
epoch: 15 Accuracy: 88.98000121116638 %
step: 0 Cross_Entropy: 50.468914
step: 100 Cross_Entropy: 50.79311
step: 200 Cross_Entropy: 51.296227
epoch: 16 Accuracy: 88.67999911308289 %
step: 0 Cross_Entropy: 48.753258
step: 100 Cross_Entropy: 46.809692
step: 200 Cross_Entropy: 48.08208
epoch: 17 Accuracy: 89.10999894142151 %
step: 0 Cross_Entropy: 46.830627
step: 100 Cross_Entropy: 47.208813
step: 200 Cross_Entropy: 48.671318
epoch: 18 Accuracy: 88.77999782562256 %
step: 0 Cross_Entropy: 46.15514
step: 100 Cross_Entropy: 45.026627
step: 200 Cross_Entropy: 45.371685
epoch: 19 Accuracy: 88.7399971485138 %
step: 0 Cross_Entropy: 47.696465
step: 100 Cross_Entropy: 41.52749
step: 200 Cross_Entropy: 46.71362
epoch: 20 Accuracy: 89.56000208854675 %

可视化

感谢你能够认真阅读完这篇文章,希望小编分享的"TensorFlow2之Fashion Mnist的示例分析"这篇文章对大家有帮助,同时也希望大家多多支持,关注行业资讯频道,更多相关知识等着你来学习!

0