千家信息网

PostgreSQL的ExecHashJoin依赖其他函数的实现逻辑是什么

发表于:2025-01-21 作者:千家信息网编辑
千家信息网最后更新 2025年01月21日,本篇内容介绍了"PostgreSQL的ExecHashJoin依赖其他函数的实现逻辑是什么"的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况
千家信息网最后更新 2025年01月21日PostgreSQL的ExecHashJoin依赖其他函数的实现逻辑是什么

本篇内容介绍了"PostgreSQL的ExecHashJoin依赖其他函数的实现逻辑是什么"的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!

一、数据结构

JoinState
Hash/NestLoop/Merge Join的基类

/* ---------------- *   JoinState information * *      Superclass for state nodes of join plans. *      Hash/NestLoop/Merge Join的基类 * ---------------- */typedef struct JoinState{    PlanState   ps;//基类PlanState    JoinType    jointype;//连接类型    //在找到一个匹配inner tuple的时候,如需要跳转到下一个outer tuple,则该值为T    bool        single_match;   /* True if we should skip to next outer tuple                                 * after finding one inner match */    //连接条件表达式(除了ps.qual)    ExprState  *joinqual;       /* JOIN quals (in addition to ps.qual) */} JoinState;

HashJoinState
Hash Join运行期状态结构体

/* these structs are defined in executor/hashjoin.h: */typedef struct HashJoinTupleData *HashJoinTuple;typedef struct HashJoinTableData *HashJoinTable;typedef struct HashJoinState{    JoinState   js;             /* 基类;its first field is NodeTag */    ExprState  *hashclauses;//hash连接条件    List       *hj_OuterHashKeys;   /* 外表条件链表;list of ExprState nodes */    List       *hj_InnerHashKeys;   /* 内表连接条件;list of ExprState nodes */    List       *hj_HashOperators;   /* 操作符OIDs链表;list of operator OIDs */    HashJoinTable hj_HashTable;//Hash表    uint32      hj_CurHashValue;//当前的Hash值    int         hj_CurBucketNo;//当前的bucket编号    int         hj_CurSkewBucketNo;//行倾斜bucket编号    HashJoinTuple hj_CurTuple;//当前元组    TupleTableSlot *hj_OuterTupleSlot;//outer relation slot    TupleTableSlot *hj_HashTupleSlot;//Hash tuple slot    TupleTableSlot *hj_NullOuterTupleSlot;//用于外连接的outer虚拟slot    TupleTableSlot *hj_NullInnerTupleSlot;//用于外连接的inner虚拟slot    TupleTableSlot *hj_FirstOuterTupleSlot;//    int         hj_JoinState;//JoinState状态    bool        hj_MatchedOuter;//是否匹配    bool        hj_OuterNotEmpty;//outer relation是否为空} HashJoinState;

HashJoinTable
Hash表数据结构

typedef struct HashJoinTableData{    int         nbuckets;       /* 内存中的hash桶数;# buckets in the in-memory hash table */    int         log2_nbuckets;  /* 2的对数(nbuckets必须是2的幂);its log2 (nbuckets must be a power of 2) */    int         nbuckets_original;  /* 首次hash时的桶数;# buckets when starting the first hash */    int         nbuckets_optimal;   /* 优化后的桶数(每个批次);optimal # buckets (per batch) */    int         log2_nbuckets_optimal;  /* 2的对数;log2(nbuckets_optimal) */    /* buckets[i] is head of list of tuples in i'th in-memory bucket */    //bucket [i]是内存中第i个桶中的元组链表的head item    union    {        /* unshared array is per-batch storage, as are all the tuples */        //未共享数组是按批处理存储的,所有元组均如此        struct HashJoinTupleData **unshared;        /* shared array is per-query DSA area, as are all the tuples */        //共享数组是每个查询的DSA区域,所有元组均如此        dsa_pointer_atomic *shared;    }           buckets;    bool        keepNulls;      /*如不匹配则存储NULL元组,该值为T;true to store unmatchable NULL tuples */    bool        skewEnabled;    /*是否使用倾斜优化?;are we using skew optimization? */    HashSkewBucket **skewBucket;    /* 倾斜的hash表桶数;hashtable of skew buckets */    int         skewBucketLen;  /* skewBucket数组大小;size of skewBucket array (a power of 2!) */    int         nSkewBuckets;   /* 活动的倾斜桶数;number of active skew buckets */    int        *skewBucketNums; /* 活动倾斜桶数组索引;array indexes of active skew buckets */    int         nbatch;         /* 批次数;number of batches */    int         curbatch;       /* 当前批次,第一轮为0;current batch #; 0 during 1st pass */    int         nbatch_original;    /* 在开始inner扫描时的批次;nbatch when we started inner scan */    int         nbatch_outstart;    /* 在开始outer扫描时的批次;nbatch when we started outer scan */    bool        growEnabled;    /* 关闭nbatch增加的标记;flag to shut off nbatch increases */    double      totalTuples;    /* 从inner plan获得的元组数;# tuples obtained from inner plan */    double      partialTuples;  /* 通过hashjoin获得的inner元组数;# tuples obtained from inner plan by me */    double      skewTuples;     /* 倾斜元组数;# tuples inserted into skew tuples */    /*     * These arrays are allocated for the life of the hash join, but only if     * nbatch > 1.  A file is opened only when we first write a tuple into it     * (otherwise its pointer remains NULL).  Note that the zero'th array     * elements never get used, since we will process rather than dump out any     * tuples of batch zero.     * 这些数组在散列连接的生命周期内分配,但仅当nbatch > 1时分配。     * 只有当第一次将元组写入文件时,文件才会打开(否则它的指针将保持NULL)。     * 注意,第0个数组元素永远不会被使用,因为批次0的元组永远不会转储.     */    BufFile   **innerBatchFile; /* 每个批次的inner虚拟临时文件缓存;buffered virtual temp file per batch */    BufFile   **outerBatchFile; /* 每个批次的outer虚拟临时文件缓存;buffered virtual temp file per batch */    /*     * Info about the datatype-specific hash functions for the datatypes being     * hashed. These are arrays of the same length as the number of hash join     * clauses (hash keys).     * 有关正在散列的数据类型的特定于数据类型的散列函数的信息。     * 这些数组的长度与散列连接子句(散列键)的数量相同。     */    FmgrInfo   *outer_hashfunctions;    /* outer hash函数FmgrInfo结构体;lookup data for hash functions */    FmgrInfo   *inner_hashfunctions;    /* inner hash函数FmgrInfo结构体;lookup data for hash functions */    bool       *hashStrict;     /* 每个hash操作符是严格?is each hash join operator strict? */    Size        spaceUsed;      /* 元组使用的当前内存空间大小;memory space currently used by tuples */    Size        spaceAllowed;   /* 空间使用上限;upper limit for space used */    Size        spacePeak;      /* 峰值的空间使用;peak space used */    Size        spaceUsedSkew;  /* 倾斜哈希表的当前空间使用情况;skew hash table's current space usage */    Size        spaceAllowedSkew;   /* 倾斜哈希表的使用上限;upper limit for skew hashtable */    MemoryContext hashCxt;      /* 整个散列连接存储的上下文;context for whole-hash-join storage */    MemoryContext batchCxt;     /* 该批次存储的上下文;context for this-batch-only storage */    /* used for dense allocation of tuples (into linked chunks) */    //用于密集分配元组(到链接块中)    HashMemoryChunk chunks;     /* 整个批次使用一个链表;one list for the whole batch */    /* Shared and private state for Parallel Hash. */    //并行hash使用的共享和私有状态    HashMemoryChunk current_chunk;  /* 后台进程的当前chunk;this backend's current chunk */    dsa_area   *area;           /* 用于分配内存的DSA区域;DSA area to allocate memory from */    ParallelHashJoinState *parallel_state;//并行执行状态    ParallelHashJoinBatchAccessor *batches;//并行访问器    dsa_pointer current_chunk_shared;//当前chunk的开始指针} HashJoinTableData;typedef struct HashJoinTableData *HashJoinTable;

HashJoinTupleData
Hash连接元组数据

/* ---------------------------------------------------------------- *              hash-join hash table structures * * Each active hashjoin has a HashJoinTable control block, which is * palloc'd in the executor's per-query context.  All other storage needed * for the hashjoin is kept in private memory contexts, two for each hashjoin. * This makes it easy and fast to release the storage when we don't need it * anymore.  (Exception: data associated with the temp files lives in the * per-query context too, since we always call buffile.c in that context.) * 每个活动的hashjoin都有一个可散列的控制块,它在执行程序的每个查询上下文中都是通过palloc分配的。 * hashjoin所需的所有其他存储都保存在私有内存上下文中,每个hashjoin有两个。 * 当不再需要它的时候,这使得释放它变得简单和快速。 * (例外:与临时文件相关的数据也存在于每个查询上下文中,因为在这种情况下总是调用buffile.c。) * * The hashtable contexts are made children of the per-query context, ensuring * that they will be discarded at end of statement even if the join is * aborted early by an error.  (Likewise, any temporary files we make will * be cleaned up by the virtual file manager in event of an error.) * hashtable上下文是每个查询上下文的子上下文,确保在语句结束时丢弃它们,即使连接因错误而提前中止。 *   (同样,如果出现错误,虚拟文件管理器将清理创建的任何临时文件。) * * Storage that should live through the entire join is allocated from the * "hashCxt", while storage that is only wanted for the current batch is * allocated in the "batchCxt".  By resetting the batchCxt at the end of * each batch, we free all the per-batch storage reliably and without tedium. * 通过整个连接的存储空间应从"hashCxt"分配,而只需要当前批处理的存储空间在"batchCxt"中分配。 * 通过在每个批处理结束时重置batchCxt,可以可靠地释放每个批处理的所有存储,而不会感到单调乏味。 *  * During first scan of inner relation, we get its tuples from executor. * If nbatch > 1 then tuples that don't belong in first batch get saved * into inner-batch temp files. The same statements apply for the * first scan of the outer relation, except we write tuples to outer-batch * temp files.  After finishing the first scan, we do the following for * each remaining batch: *  1. Read tuples from inner batch file, load into hash buckets. *  2. Read tuples from outer batch file, match to hash buckets and output. * 在内部关系的第一次扫描中,从执行者那里得到了它的元组。 * 如果nbatch > 1,那么不属于第一批的元组将保存到批内临时文件中。 * 相同的语句适用于外关系的第一次扫描,但是我们将元组写入外部批处理临时文件。 * 完成第一次扫描后,我们对每批剩余的元组做如下处理:  * 1.从内部批处理文件读取元组,加载到散列桶中。 * 2.从外部批处理文件读取元组,匹配哈希桶和输出。  * * It is possible to increase nbatch on the fly if the in-memory hash table * gets too big.  The hash-value-to-batch computation is arranged so that this * can only cause a tuple to go into a later batch than previously thought, * never into an earlier batch.  When we increase nbatch, we rescan the hash * table and dump out any tuples that are now of a later batch to the correct * inner batch file.  Subsequently, while reading either inner or outer batch * files, we might find tuples that no longer belong to the current batch; * if so, we just dump them out to the correct batch file. * 如果内存中的哈希表太大,可以动态增加nbatch。 * 散列值到批处理的计算是这样安排的: *   这只会导致元组进入比以前认为的更晚的批处理,而不会进入更早的批处理。 * 当增加nbatch时,重新扫描哈希表,并将现在属于后面批处理的任何元组转储到正确的内部批处理文件。 * 随后,在读取内部或外部批处理文件时,可能会发现不再属于当前批处理的元组; *   如果是这样,只需将它们转储到正确的批处理文件即可。 * ---------------------------------------------------------------- *//* these are in nodes/execnodes.h: *//* typedef struct HashJoinTupleData *HashJoinTuple; *//* typedef struct HashJoinTableData *HashJoinTable; */typedef struct HashJoinTupleData{    /* link to next tuple in same bucket */    //link同一个桶中的下一个元组    union    {        struct HashJoinTupleData *unshared;        dsa_pointer shared;    }           next;    uint32      hashvalue;      /* 元组的hash值;tuple's hash code */    /* Tuple data, in MinimalTuple format, follows on a MAXALIGN boundary */}           HashJoinTupleData;#define HJTUPLE_OVERHEAD  MAXALIGN(sizeof(HashJoinTupleData))#define HJTUPLE_MINTUPLE(hjtup)  \    ((MinimalTuple) ((char *) (hjtup) + HJTUPLE_OVERHEAD))

二、源码解读

ExecScanHashBucket
搜索匹配当前outer relation tuple的hash桶,寻找匹配的inner relation元组。

/*----------------------------------------------------------------------------------------------------                                    HJ_SCAN_BUCKET 阶段----------------------------------------------------------------------------------------------------*//* * ExecScanHashBucket *      scan a hash bucket for matches to the current outer tuple *      搜索匹配当前outer relation tuple的hash桶 *  * The current outer tuple must be stored in econtext->ecxt_outertuple. * 当前的outer relation tuple必须存储在econtext->ecxt_outertuple中 *  * On success, the inner tuple is stored into hjstate->hj_CurTuple and * econtext->ecxt_innertuple, using hjstate->hj_HashTupleSlot as the slot * for the latter. * 成功后,内部元组存储到hjstate->hj_CurTuple和econtext->ecxt_innertuple中, *   使用hjstate->hj_HashTupleSlot作为后者的slot。 */boolExecScanHashBucket(HashJoinState *hjstate,                   ExprContext *econtext){    ExprState  *hjclauses = hjstate->hashclauses;//hash连接条件表达式    HashJoinTable hashtable = hjstate->hj_HashTable;//Hash表    HashJoinTuple hashTuple = hjstate->hj_CurTuple;//当前的Tuple    uint32      hashvalue = hjstate->hj_CurHashValue;//hash值    /*     * hj_CurTuple is the address of the tuple last returned from the current     * bucket, or NULL if it's time to start scanning a new bucket.     * hj_CurTuple是最近从当前桶返回的元组的地址,如果需要开始扫描新桶,则为NULL。     *     * If the tuple hashed to a skew bucket then scan the skew bucket     * otherwise scan the standard hashtable bucket.     * 如果元组散列到倾斜桶,则扫描倾斜桶,否则扫描标准哈希表桶。     */    if (hashTuple != NULL)        hashTuple = hashTuple->next.unshared;//hashTuple,通过指针获取下一个    else if (hjstate->hj_CurSkewBucketNo != INVALID_SKEW_BUCKET_NO)        //如为NULL,而且使用倾斜优化,则从倾斜桶中获取        hashTuple = hashtable->skewBucket[hjstate->hj_CurSkewBucketNo]->tuples;    else        ////如为NULL,不使用倾斜优化,从常规的bucket中获取        hashTuple = hashtable->buckets.unshared[hjstate->hj_CurBucketNo];    while (hashTuple != NULL)//循环    {        if (hashTuple->hashvalue == hashvalue)//hash值一致        {            TupleTableSlot *inntuple;//inner tuple            /* insert hashtable's tuple into exec slot so ExecQual sees it */            //把Hash表中的tuple插入到执行器的slot中,作为函数ExecQual的输入使用            inntuple = ExecStoreMinimalTuple(HJTUPLE_MINTUPLE(hashTuple),                                             hjstate->hj_HashTupleSlot,                                             false);    /* do not pfree */            econtext->ecxt_innertuple = inntuple;//赋值            if (ExecQualAndReset(hjclauses, econtext))//判断连接条件是否满足            {                hjstate->hj_CurTuple = hashTuple;//满足,则赋值&返回T                return true;            }        }        hashTuple = hashTuple->next.unshared;//从Hash表中获取下一个tuple    }    /*     * no match     * 不匹配,返回F     */    return false;}/* * Store a minimal tuple into TTSOpsMinimalTuple type slot. * 存储最小化的tuple到TTSOpsMinimalTuple类型的slot中 * * If the target slot is not guaranteed to be TTSOpsMinimalTuple type slot, * use the, more expensive, ExecForceStoreMinimalTuple(). * 如果目标slot不能确保是TTSOpsMinimalTuple类型,使用代价更高的ExecForceStoreMinimalTuple()函数 */TupleTableSlot *ExecStoreMinimalTuple(MinimalTuple mtup,                      TupleTableSlot *slot,                      bool shouldFree){    /*     * sanity checks     * 安全检查     */    Assert(mtup != NULL);    Assert(slot != NULL);    Assert(slot->tts_tupleDescriptor != NULL);    if (unlikely(!TTS_IS_MINIMALTUPLE(slot)))//类型检查        elog(ERROR, "trying to store a minimal tuple into wrong type of slot");    tts_minimal_store_tuple(slot, mtup, shouldFree);//存储    return slot;//返回slot}static voidtts_minimal_store_tuple(TupleTableSlot *slot, MinimalTuple mtup, bool shouldFree){    MinimalTupleTableSlot *mslot = (MinimalTupleTableSlot *) slot;//获取slot    tts_minimal_clear(slot);//清除原来的slot    //安全检查    Assert(!TTS_SHOULDFREE(slot));    Assert(TTS_EMPTY(slot));    //设置slot信息    slot->tts_flags &= ~TTS_FLAG_EMPTY;    slot->tts_nvalid = 0;    mslot->off = 0;    //存储到mslot中    mslot->mintuple = mtup;    Assert(mslot->tuple == &mslot->minhdr);    mslot->minhdr.t_len = mtup->t_len + MINIMAL_TUPLE_OFFSET;    mslot->minhdr.t_data = (HeapTupleHeader) ((char *) mtup - MINIMAL_TUPLE_OFFSET);    /* no need to set t_self or t_tableOid since we won't allow access */    //不需要设置t_sefl或者t_tableOid,因为不允许访问    if (shouldFree)        slot->tts_flags |= TTS_FLAG_SHOULDFREE;    else        Assert(!TTS_SHOULDFREE(slot));} /* * ExecQualAndReset() - evaluate qual with ExecQual() and reset expression * context. * ExecQualAndReset() - 使用ExecQual()解析并重置表达式 */#ifndef FRONTENDstatic inline boolExecQualAndReset(ExprState *state, ExprContext *econtext){    bool        ret = ExecQual(state, econtext);//调用ExecQual    /* inline ResetExprContext, to avoid ordering issue in this file */    //内联ResetExprContext,避免在这个文件中的ordering    MemoryContextReset(econtext->ecxt_per_tuple_memory);    return ret;}#endif#define HeapTupleHeaderSetMatch(tup) \( \  (tup)->t_infomask2 |= HEAP_TUPLE_HAS_MATCH \)

三、跟踪分析

测试脚本如下

testdb=# set enable_nestloop=false;SETtestdb=# set enable_mergejoin=false;SETtestdb=# explain verbose select dw.*,grjf.grbh,grjf.xm,grjf.ny,grjf.je testdb-# from t_dwxx dw,lateral (select gr.grbh,gr.xm,jf.ny,jf.je testdb(#                         from t_grxx gr inner join t_jfxx jf testdb(#                                        on gr.dwbh = dw.dwbh testdb(#                                           and gr.grbh = jf.grbh) grjftestdb-# order by dw.dwbh;                                          QUERY PLAN                                           ----------------------------------------------------------------------------------------------- Sort  (cost=14828.83..15078.46 rows=99850 width=47)   Output: dw.dwmc, dw.dwbh, dw.dwdz, gr.grbh, gr.xm, jf.ny, jf.je   Sort Key: dw.dwbh   ->  Hash Join  (cost=3176.00..6537.55 rows=99850 width=47)         Output: dw.dwmc, dw.dwbh, dw.dwdz, gr.grbh, gr.xm, jf.ny, jf.je         Hash Cond: ((gr.grbh)::text = (jf.grbh)::text)         ->  Hash Join  (cost=289.00..2277.61 rows=99850 width=32)               Output: dw.dwmc, dw.dwbh, dw.dwdz, gr.grbh, gr.xm               Inner Unique: true               Hash Cond: ((gr.dwbh)::text = (dw.dwbh)::text)               ->  Seq Scan on public.t_grxx gr  (cost=0.00..1726.00 rows=100000 width=16)                     Output: gr.dwbh, gr.grbh, gr.xm, gr.xb, gr.nl               ->  Hash  (cost=164.00..164.00 rows=10000 width=20)                     Output: dw.dwmc, dw.dwbh, dw.dwdz                     ->  Seq Scan on public.t_dwxx dw  (cost=0.00..164.00 rows=10000 width=20)                           Output: dw.dwmc, dw.dwbh, dw.dwdz         ->  Hash  (cost=1637.00..1637.00 rows=100000 width=20)               Output: jf.ny, jf.je, jf.grbh               ->  Seq Scan on public.t_jfxx jf  (cost=0.00..1637.00 rows=100000 width=20)                     Output: jf.ny, jf.je, jf.grbh(20 rows)

启动gdb,设置断点

(gdb) b ExecScanHashBucketBreakpoint 1 at 0x6ff25b: file nodeHash.c, line 1910.(gdb) cContinuing.Breakpoint 1, ExecScanHashBucket (hjstate=0x2bb8738, econtext=0x2bb8950) at nodeHash.c:19101910        ExprState  *hjclauses = hjstate->hashclauses;

设置相关变量

1910        ExprState  *hjclauses = hjstate->hashclauses;(gdb) n1911        HashJoinTable hashtable = hjstate->hj_HashTable;(gdb) 1912        HashJoinTuple hashTuple = hjstate->hj_CurTuple;(gdb) 1913        uint32      hashvalue = hjstate->hj_CurHashValue;(gdb) 1922        if (hashTuple != NULL)

hash join连接条件

(gdb) p *hjclauses$1 = {tag = {type = T_ExprState}, flags = 7 '\a', resnull = false, resvalue = 0, resultslot = 0x0, steps = 0x2bc4bc8,   evalfunc = 0x6d1a6e , expr = 0x2bb60c0, evalfunc_private = 0x6cf625 ,   steps_len = 7, steps_alloc = 16, parent = 0x2bb8738, ext_params = 0x0, innermost_caseval = 0x0, innermost_casenull = 0x0,   innermost_domainval = 0x0, innermost_domainnull = 0x0}

hash表

(gdb) p hashtable$2 = (HashJoinTable) 0x2bc9de8(gdb) p *hashtable$3 = {nbuckets = 16384, log2_nbuckets = 14, nbuckets_original = 16384, nbuckets_optimal = 16384,   log2_nbuckets_optimal = 14, buckets = {unshared = 0x7f0fc1345050, shared = 0x7f0fc1345050}, keepNulls = false,   skewEnabled = false, skewBucket = 0x0, skewBucketLen = 0, nSkewBuckets = 0, skewBucketNums = 0x0, nbatch = 1,   curbatch = 0, nbatch_original = 1, nbatch_outstart = 1, growEnabled = true, totalTuples = 10000, partialTuples = 10000,   skewTuples = 0, innerBatchFile = 0x0, outerBatchFile = 0x0, outer_hashfunctions = 0x2bdc228,   inner_hashfunctions = 0x2bdc280, hashStrict = 0x2bdc2d8, spaceUsed = 677754, spaceAllowed = 16777216, spacePeak = 677754,   spaceUsedSkew = 0, spaceAllowedSkew = 335544, hashCxt = 0x2bdc110, batchCxt = 0x2bde120, chunks = 0x2c708f0,   current_chunk = 0x0, area = 0x0, parallel_state = 0x0, batches = 0x0, current_chunk_shared = 0}

hash桶中的元组&hash值

(gdb) p *hashTupleCannot access memory at address 0x0(gdb) p hashvalue$4 = 2324234220(gdb)

从常规hash桶中获取hash元组

(gdb) n1924        else if (hjstate->hj_CurSkewBucketNo != INVALID_SKEW_BUCKET_NO)(gdb) p hjstate->hj_CurSkewBucketNo$5 = -1(gdb) n1927            hashTuple = hashtable->buckets.unshared[hjstate->hj_CurBucketNo];(gdb) 1929        while (hashTuple != NULL)(gdb) p hjstate->hj_CurBucketNo$7 = 16364(gdb) p *hashTuple$6 = {next = {unshared = 0x0, shared = 0}, hashvalue = 1822113772}

判断hash值是否一致

(gdb) n1931            if (hashTuple->hashvalue == hashvalue)(gdb) p hashTuple->hashvalue$8 = 1822113772(gdb) p hashvalue$9 = 2324234220(gdb)

不一致,继续下一个元组

(gdb) n1948            hashTuple = hashTuple->next.unshared;(gdb) 1929        while (hashTuple != NULL)

下一个元组为NULL,返回F,说明没有匹配的元组

(gdb) p *hashTupleCannot access memory at address 0x0(gdb) n1954        return false;

在ExecStoreMinimalTuple上设置断点(这时候Hash值是一致的)

(gdb) b ExecStoreMinimalTupleBreakpoint 2 at 0x6e8cbf: file execTuples.c, line 427.(gdb) cContinuing.Breakpoint 1, ExecScanHashBucket (hjstate=0x2bb8738, econtext=0x2bb8950) at nodeHash.c:19101910        ExprState  *hjclauses = hjstate->hashclauses;(gdb) del 1(gdb) cContinuing.Breakpoint 2, ExecStoreMinimalTuple (mtup=0x2be81b0, slot=0x2bb9c18, shouldFree=false) at execTuples.c:427427     Assert(mtup != NULL);(gdb) finishRun till exit from #0  ExecStoreMinimalTuple (mtup=0x2be81b0, slot=0x2bb9c18, shouldFree=false) at execTuples.c:4270x00000000006ff335 in ExecScanHashBucket (hjstate=0x2bb8738, econtext=0x2bb8950) at nodeHash.c:19361936                inntuple = ExecStoreMinimalTuple(HJTUPLE_MINTUPLE(hashTuple),Value returned is $10 = (TupleTableSlot *) 0x2bb9c18(gdb) n1939                econtext->ecxt_innertuple = inntuple;

匹配成功,返回T

(gdb) n1941                if (ExecQualAndReset(hjclauses, econtext))(gdb) 1943                    hjstate->hj_CurTuple = hashTuple;(gdb) 1944                    return true;(gdb) 1955    }(gdb)

HJ_SCAN_BUCKET阶段,实现的逻辑是扫描Hash桶,寻找inner relation中与outer relation元组匹配的元组,如匹配,则把匹配的Tuple存储在hjstate->hj_CurTuple中.

"PostgreSQL的ExecHashJoin依赖其他函数的实现逻辑是什么"的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注网站,小编将为大家输出更多高质量的实用文章!

0