Python中怎么绘制各种折线图
发表于:2025-02-08 作者:千家信息网编辑
千家信息网最后更新 2025年02月08日,Python中怎么绘制各种折线图,很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。1.基本折线图import pyechar
千家信息网最后更新 2025年02月08日Python中怎么绘制各种折线图
Python中怎么绘制各种折线图,很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。
1.基本折线图
import pyecharts.options as optsfrom pyecharts.charts import Linex=['星期一','星期二','星期三','星期四','星期五','星期七','星期日']y=[100,200,300,400,500,400,300]line=( Line() .set_global_opts( tooltip_opts=opts.TooltipOpts(is_show=False), xaxis_opts=opts.AxisOpts(type_="category"), yaxis_opts=opts.AxisOpts( type_="value", axistick_opts=opts.AxisTickOpts(is_show=True), splitline_opts=opts.SplitLineOpts(is_show=True), ), ) .add_xaxis(xaxis_data=x) .add_yaxis( series_name="基本折线图", y_axis=y, symbol="emptyCircle", is_symbol_show=True, label_opts=opts.LabelOpts(is_show=False), ))line.render_notebook()
series_name:图形名称 y_axis:数据 symbol:标记的图形,pyecharts提供的类型包括'circle', 'rect', 'roundRect', 'triangle', 'diamond', 'pin', 'arrow', 'none',也可以通过 'image://url' 设置为图片,其中 URL 为图片的链接。is_symbol_show:是否显示 symbol
2.连接空数据(折线图)
有时候我们要分析的数据存在空缺值,需要进行处理才能画出折线图
import pyecharts.options as optsfrom pyecharts.charts import Linex=['星期一','星期二','星期三','星期四','星期五','星期七','星期日']y=[100,200,300,400,None,400,300]line=( Line() .add_xaxis(xaxis_data=x) .add_yaxis( series_name="连接空数据(折线图)", y_axis=y, is_connect_nones=True ) .set_global_opts(title_opts=opts.TitleOpts(title="Line-连接空数据")))line.render_notebook()
3.多条折线重叠
import pyecharts.options as optsfrom pyecharts.charts import Linex=['星期一','星期二','星期三','星期四','星期五','星期七','星期日']y1=[100,200,300,400,100,400,300]y2=[200,300,200,100,200,300,400]line=( Line() .add_xaxis(xaxis_data=x) .add_yaxis(series_name="y1线",y_axis=y1,symbol="arrow",is_symbol_show=True) .add_yaxis(series_name="y2线",y_axis=y2) .set_global_opts(title_opts=opts.TitleOpts(title="Line-多折线重叠")))line.render_notebook()
4.平滑曲线折线图
import pyecharts.options as optsfrom pyecharts.charts import Linex=['星期一','星期二','星期三','星期四','星期五','星期七','星期日']y1=[100,200,300,400,100,400,300]y2=[200,300,200,100,200,300,400]line=( Line() .add_xaxis(xaxis_data=x) .add_yaxis(series_name="y1线",y_axis=y1, is_smooth=True) .add_yaxis(series_name="y2线",y_axis=y2, is_smooth=True) .set_global_opts(title_opts=opts.TitleOpts(title="Line-多折线重叠")))line.render_notebook()
is_smooth:平滑曲线标志
5.阶梯图
import pyecharts.options as optsfrom pyecharts.charts import Linex=['星期一','星期二','星期三','星期四','星期五','星期七','星期日']y1=[100,200,300,400,100,400,300]line=( Line() .add_xaxis(xaxis_data=x) .add_yaxis(series_name="y1线",y_axis=y1, is_step=True) .set_global_opts(title_opts=opts.TitleOpts(title="Line-阶梯图")))line.render_notebook()
is_step:阶梯图参数
6.变换折线的样式
import pyecharts.options as optsfrom pyecharts.charts import Linefrom pyecharts.faker import Fakerx=['星期一','星期二','星期三','星期四','星期五','星期七','星期日']y1=[100,200,300,400,100,400,300]line = ( Line() .add_xaxis(xaxis_data=x) .add_yaxis( "y1", y1, symbol="triangle", symbol_size=30, linestyle_opts=opts.LineStyleOpts(color="red", width=4, type_="dashed"), itemstyle_opts=opts.ItemStyleOpts( border_width=3, border_color="yellow", color="blue" ), ) .set_global_opts(title_opts=opts.TitleOpts(title="Line-ItemStyle")))line.render_notebook()
linestyle_opts:折线样式配置color设置颜色,width设置宽度type设置类型,有'solid', 'dashed', 'dotted'三种类型 itemstyle_opts:图元样式配置,border_width设置描边宽度,border_color设置描边颜色,color设置纹理填充颜色
7.折线面积图
import pyecharts.options as optsfrom pyecharts.charts import Linex=['星期一','星期二','星期三','星期四','星期五','星期七','星期日']y1=[100,200,300,400,100,400,300]y2=[200,300,200,100,200,300,400]line=( Line() .add_xaxis(xaxis_data=x) .add_yaxis(series_name="y1线",y_axis=y1,areastyle_opts=opts.AreaStyleOpts(opacity=0.5)) .add_yaxis(series_name="y2线",y_axis=y2,areastyle_opts=opts.AreaStyleOpts(opacity=0.5)) .set_global_opts(title_opts=opts.TitleOpts(title="Line-多折线重叠")))line.render_notebook()
8.双横坐标折线图
import pyecharts.options as optsfrom pyecharts.charts import Linefrom pyecharts.commons.utils import JsCodejs_formatter = """function (params) { console.log(params); return '降水量 ' + params.value + (params.seriesData.length ? ':' + params.seriesData[0].data : ''); }"""line=( Line() .add_xaxis( xaxis_data=[ "2016-1", "2016-2", "2016-3", "2016-4", "2016-5", "2016-6", "2016-7", "2016-8", "2016-9", "2016-10", "2016-11", "2016-12", ] ) .extend_axis( xaxis_data=[ "2015-1", "2015-2", "2015-3", "2015-4", "2015-5", "2015-6", "2015-7", "2015-8", "2015-9", "2015-10", "2015-11", "2015-12", ], xaxis=opts.AxisOpts( type_="category", axistick_opts=opts.AxisTickOpts(is_align_with_label=True), axisline_opts=opts.AxisLineOpts( is_on_zero=False, linestyle_opts=opts.LineStyleOpts(color="#6e9ef1") ), axispointer_opts=opts.AxisPointerOpts( is_show=True, label=opts.LabelOpts(formatter=JsCode(js_formatter)) ), ), ) .add_yaxis( series_name="2015 降水量", is_smooth=True, symbol="emptyCircle", is_symbol_show=False, color="#d14a61", y_axis=[2.6, 5.9, 9.0, 26.4, 28.7, 70.7, 175.6, 182.2, 48.7, 18.8, 6.0, 2.3], label_opts=opts.LabelOpts(is_show=False), linestyle_opts=opts.LineStyleOpts(width=2), ) .add_yaxis( series_name="2016 降水量", is_smooth=True, symbol="emptyCircle", is_symbol_show=False, color="#6e9ef1", y_axis=[3.9, 5.9, 11.1, 18.7, 48.3, 69.2, 231.6, 46.6, 55.4, 18.4, 10.3, 0.7], label_opts=opts.LabelOpts(is_show=False), linestyle_opts=opts.LineStyleOpts(width=2), ) .set_global_opts( legend_opts=opts.LegendOpts(), tooltip_opts=opts.TooltipOpts(trigger="none", axis_pointer_type="cross"), xaxis_opts=opts.AxisOpts( type_="category", axistick_opts=opts.AxisTickOpts(is_align_with_label=True), axisline_opts=opts.AxisLineOpts( is_on_zero=False, linestyle_opts=opts.LineStyleOpts(color="#d14a61") ), axispointer_opts=opts.AxisPointerOpts( is_show=True, label=opts.LabelOpts(formatter=JsCode(js_formatter)) ), ), yaxis_opts=opts.AxisOpts( type_="value", splitline_opts=opts.SplitLineOpts( is_show=True, linestyle_opts=opts.LineStyleOpts(opacity=1) ), ), ))line.render_notebook()
9.用电量随时间变化
import pyecharts.options as optsfrom pyecharts.charts import Linex_data = [ "00:00", "01:15", "02:30", "03:45", "05:00", "06:15", "07:30", "08:45", "10:00", "11:15", "12:30", "13:45", "15:00", "16:15", "17:30", "18:45", "20:00", "21:15", "22:30", "23:45",]y_data = [ 300, 280, 250, 260, 270, 300, 550, 500, 400, 390, 380, 390, 400, 500, 600, 750, 800, 700, 600, 400,]line=( Line() .add_xaxis(xaxis_data=x_data) .add_yaxis( series_name="用电量", y_axis=y_data, is_smooth=True, label_opts=opts.LabelOpts(is_show=False), linestyle_opts=opts.LineStyleOpts(width=2), ) .set_global_opts( title_opts=opts.TitleOpts(title="一天用电量分布", subtitle="纯属虚构"), tooltip_opts=opts.TooltipOpts(trigger="axis", axis_pointer_type="cross"), xaxis_opts=opts.AxisOpts(boundary_gap=False), yaxis_opts=opts.AxisOpts( axislabel_opts=opts.LabelOpts(formatter="{value} W"), splitline_opts=opts.SplitLineOpts(is_show=True), ), visualmap_opts=opts.VisualMapOpts( is_piecewise=True, dimension=0, pieces=[ {"lte": 6, "color": "green"}, {"gt": 6, "lte": 8, "color": "red"}, {"gt": 8, "lte": 14, "color": "yellow"}, {"gt": 14, "lte": 17, "color": "red"}, {"gt": 17, "color": "green"}, ], pos_right=0, pos_bottom=100 ), ) .set_series_opts( markarea_opts=opts.MarkAreaOpts( data=[ opts.MarkAreaItem(name="早高峰", x=("07:30", "10:00")), opts.MarkAreaItem(name="晚高峰", x=("17:30", "21:15")), ] ) ))line.render_notebook()
这里给大家介绍几个关键参数:
①visualmap_opts:视觉映射配置项,可以将折线分段并设置标签(is_piecewise),将不同段设置颜色(pieces);②markarea_opts:标记区域配置项,data参数可以设置标记区域名称和位置。
看完上述内容是否对您有帮助呢?如果还想对相关知识有进一步的了解或阅读更多相关文章,请关注行业资讯频道,感谢您对的支持。
星期
线图
折线
数据
颜色
配置
参数
标记
样式
用电量
类型
阶梯
降水
降水量
平滑
区域
名称
图形
图片
宽度
数据库的安全要保护哪些东西
数据库安全各自的含义是什么
生产安全数据库录入
数据库的安全性及管理
数据库安全策略包含哪些
海淀数据库安全审计系统
建立农村房屋安全信息数据库
易用的数据库客户端支持安全管理
连接数据库失败ssl安全错误
数据库的锁怎样保障安全
面试官问你对数据库的了解
共建网络安全画简单又好看
域服务器坏了影响用户吗
雷神加速器连接服务器
中央企业服务器
建设数据库选哪家
苏州凡式网络技术有限公司
2分钟建造mc服务器
电力系统网络安全防护方案
数据库的类型网络数据库
管理压缩卷启动服务器
新华互联网科技学校总校
数据库直接特性的是什么
路由器网络技术 论坛
软件开发工程师业绩指标
方舟进化无法进入服务器
谷歌软件开发自带的安卓模拟器
坏死性凋亡基因数据库
常熟网络技术创新服务
excel数据库的建立6
普陀区管理软件开发创新服务
数据库文件不能脱机
南宁订票软件开发
sql数据库技术期末作业
企业软件开发标准流程
抖音服务器知乎
数据库访问对硬盘要求
天津曙光服务器维修调试多少钱
服务器防护群组
阳江数字软件开发厂家直销