千家信息网

leetcode如何解决区域和检索之数组不可变问题

发表于:2025-02-03 作者:千家信息网编辑
千家信息网最后更新 2025年02月03日,小编给大家分享一下leetcode如何解决区域和检索之数组不可变问题,希望大家阅读完这篇文章之后都有所收获,下面让我们一起去探讨吧!一、题目内容给定一个整数数组 nums,求出数组从索引 i 到 j(
千家信息网最后更新 2025年02月03日leetcode如何解决区域和检索之数组不可变问题

小编给大家分享一下leetcode如何解决区域和检索之数组不可变问题,希望大家阅读完这篇文章之后都有所收获,下面让我们一起去探讨吧!

一、题目内容

给定一个整数数组 nums,求出数组从索引 i 到 j(i ≤ j)范围内元素的总和,包含 i、j 两点。

实现 NumArray 类:

NumArray(int[] nums) 使用数组 nums 初始化对象
int sumRange(int i, int j) 返回数组 nums 从索引 i 到 j(i ≤ j)范围内元素的总和,包含 i、j 两点(也就是 sum(nums[i], nums[i + 1], ... , nums[j]))

示例:

输入:
["NumArray", "sumRange", "sumRange", "sumRange"]
[[[-2, 0, 3, -5, 2, -1]], [0, 2], [2, 5], [0, 5]]
输出:
[null, 1, -1, -3]

解释:
NumArray numArray = new NumArray([-2, 0, 3, -5, 2, -1]);
numArray.sumRange(0, 2); // return 1 ((-2) + 0 + 3)
numArray.sumRange(2, 5); // return -1 (3 + (-5) + 2 + (-1))
numArray.sumRange(0, 5); // return -3 ((-2) + 0 + 3 + (-5) + 2 + (-1))

提示:

0 <= nums.length <= 10^4
-105 <= nums[i] <= 10^5
0 <= i <= j < nums.length
最多调用 104 次 sumRange 方法

二、解题思路

1.暴力法,每次都从i到j计算和;

2.动态规划,计算从左边起始到每个元素的和,当前和=到之前数字的和+当前数字;

三、代码

class NumArray1:    def __init__(self, nums: list):        self.nums = nums    def sumRange(self, i: int, j: int) -> int:        return sum(self.nums[i:j + 1])class NumArray2:    def __init__(self, nums: list):        self.nums = nums        self.sums = [0 for _ in range(len(nums) + 1)]        for i in range(len(nums)):            self.sums[i + 1] = self.sums[i] + nums[i]    def sumRange(self, i: int, j: int) -> int:        return self.sums[j + 1] - self.sums[i]# Your NumArray object will be instantiated and called as such:# obj = NumArray(nums)# param_1 = obj.sumRange(i,j)if __name__ == '__main__':    nums = [-2, 0, 3, -5, 2, -1]    numArray = NumArray2(nums)    ans1 = numArray.sumRange(0, 2)    ans2 = numArray.sumRange(2, 5)    ans3 = numArray.sumRange(0, 5)    print(ans1)    print(ans2)    print(ans3)

看完了这篇文章,相信你对"leetcode如何解决区域和检索之数组不可变问题"有了一定的了解,如果想了解更多相关知识,欢迎关注行业资讯频道,感谢各位的阅读!

0