Python爬虫入门案例之实现爬取二手房源数据
发表于:2025-01-20 作者:千家信息网编辑
千家信息网最后更新 2025年01月20日,本篇内容介绍了"Python爬虫入门案例之实现爬取二手房源数据"的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学
千家信息网最后更新 2025年01月20日Python爬虫入门案例之实现爬取二手房源数据
本篇内容介绍了"Python爬虫入门案例之实现爬取二手房源数据"的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!
本文重点
系统分析网页性质
结构化的数据解析
csv数据保存
环境介绍
python 3.8
pycharm 专业版 >>> 激活码
#模块使用
requests >>> pip install requests
parsel >>> pip install parsel
csv
【付费VIP完整版】只要看了就能学会的教程,80集Python基础入门视频教学
点这里即可免费在线观看
爬虫代码实现步骤: 发送请求 >>> 获取数据 >>> 解析数据 >>> 保存数据
导入模块
import requests # 数据请求模块 第三方模块 pip install requestsimport parsel # 数据解析模块import reimport csv
发送请求, 对于房源列表页发送请求
url = 'https://bj.lianjia.com/ershoufang/pg1/'# 需要携带上 请求头: 把python代码伪装成浏览器 对于服务器发送请求# User-Agent 浏览器的基本信息headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/94.0.4606.61 Safari/537.36'}response = requests.get(url=url, headers=headers)
获取数据
print(response.text)
解析数据
selector_1 = parsel.Selector(response.text)# 把获取到response.text 数据内容转成 selector 对象href = selector_1.css('div.leftContent li div.title a::attr(href)').getall()for link in href: html_data = requests.get(url=link, headers=headers).text selector = parsel.Selector(html_data) # css选择器 语法 # try: title = selector.css('.title h2::text').get() # 标题 area = selector.css('.areaName .info a:nth-child(1)::text').get() # 区域 community_name = selector.css('.communityName .info::text').get() # 小区 room = selector.css('.room .mainInfo::text').get() # 户型 room_type = selector.css('.type .mainInfo::text').get() # 朝向 height = selector.css('.room .subInfo::text').get().split('/')[-1] # 楼层 # 中楼层/共5层 split('/') 进行字符串分割 ['中楼层', '共5层'] [-1] # ['中楼层', '共5层'][-1] 列表索引位置取值 取列表中最后一个元素 共5层 # re.findall('共(\d+)层', 共5层) >>> [5][0] >>> 5 height = re.findall('共(\d+)层', height)[0] sub_info = selector.css('.type .subInfo::text').get().split('/')[-1] # 装修 Elevator = selector.css('.content li:nth-child(12)::text').get() # 电梯 # if Elevator == '暂无数据电梯' or Elevator == None: # Elevator = '无电梯' house_area = selector.css('.content li:nth-child(3)::text').get().replace('㎡', '') # 面积 price = selector.css('.price .total::text').get() # 价格(万元) date = selector.css('.area .subInfo::text').get().replace('年建', '') # 年份 dit = { '标题': title, '市区': area, '小区': community_name, '户型': room, '朝向': room_type, '楼层': height, '装修情况': sub_info, '电梯': Elevator, '面积(㎡)': house_area, '价格(万元)': price, '年份': date, } csv_writer.writerow(dit) print(title, area, community_name, room, room_type, height, sub_info, Elevator, house_area, price, date, sep='|')
保存数据
f = open('二手房数据.csv', mode='a', encoding='utf-8', newline='')csv_writer = csv.DictWriter(f, fieldnames=[ '标题', '市区', '小区', '户型', '朝向', '楼层', '装修情况', '电梯', '面积(㎡)', '价格(万元)', '年份',])csv_writer.writeheader()
数据可视化
导入所需模块
import pandas as pdfrom pyecharts.charts import Mapfrom pyecharts.charts import Barfrom pyecharts.charts import Linefrom pyecharts.charts import Gridfrom pyecharts.charts import Piefrom pyecharts.charts import Scatterfrom pyecharts import options as opts
读取数据
df = pd.read_csv('链家.csv', encoding = 'utf-8')df.head()
各城区二手房数量北京市地图
new = [x + '区' for x in region]m = ( Map() .add('', [list(z) for z in zip(new, count)], '北京') .set_global_opts( title_opts=opts.TitleOpts(title='北京市二手房各区分布'), visualmap_opts=opts.VisualMapOpts(max_=3000), ) )m.render_notebook()
各城区二手房数量-平均价格柱状图
df_price.values.tolist()price = [round(x,2) for x in df_price.values.tolist()]bar = ( Bar() .add_xaxis(region) .add_yaxis('数量', count, label_opts=opts.LabelOpts(is_show=True)) .extend_axis( yaxis=opts.AxisOpts( name="价格(万元)", type_="value", min_=200, max_=900, interval=100, axislabel_opts=opts.LabelOpts(formatter="{value}"), ) ) .set_global_opts( title_opts=opts.TitleOpts(title='各城区二手房数量-平均价格柱状图'), tooltip_opts=opts.TooltipOpts( is_show=True, trigger="axis", axis_pointer_type="cross" ), xaxis_opts=opts.AxisOpts( type_="category", axispointer_opts=opts.AxisPointerOpts(is_show=True, type_="shadow"), ), yaxis_opts=opts.AxisOpts(name='数量', axistick_opts=opts.AxisTickOpts(is_show=True), splitline_opts=opts.SplitLineOpts(is_show=False),) ))line2 = ( Line() .add_xaxis(xaxis_data=region) .add_yaxis( series_name="价格", yaxis_index=1, y_axis=price, label_opts=opts.LabelOpts(is_show=True), z=10 ))bar.overlap(line2)grid = Grid()grid.add(bar, opts.GridOpts(pos_left="5%", pos_right="20%"), is_control_axis_index=True)grid.render_notebook()
area0 = top_price['小区'].values.tolist()count = top_price['价格(万元)'].values.tolist()bar = ( Bar() .add_xaxis(area0) .add_yaxis('数量', count,category_gap = '50%') .set_global_opts( yaxis_opts=opts.AxisOpts(name='价格(万元)'), xaxis_opts=opts.AxisOpts(name='数量'), ))bar.render_notebook()
散点图
s = ( Scatter() .add_xaxis(df['面积(㎡)'].values.tolist()) .add_yaxis('',df['价格(万元)'].values.tolist()) .set_global_opts(xaxis_opts=opts.AxisOpts(type_='value')))s.render_notebook()
房屋朝向占比
directions = df_direction.index.tolist()count = df_direction.values.tolist()c1 = ( Pie(init_opts=opts.InitOpts( width='800px', height='600px', ) ) .add( '', [list(z) for z in zip(directions, count)], radius=['20%', '60%'], center=['40%', '50%'],# rosetype="radius", label_opts=opts.LabelOpts(is_show=True), ) .set_global_opts(title_opts=opts.TitleOpts(title='房屋朝向占比',pos_left='33%',pos_top="5%"), legend_opts=opts.LegendOpts(type_="scroll", pos_left="80%",pos_top="25%",orient="vertical") ) .set_series_opts(label_opts=opts.LabelOpts(formatter='{b}:{c} ({d}%)'),position="outside") )c1.render_notebook()
装修情况/有无电梯玫瑰图(组合图)
fitment = df_fitment.index.tolist()count1 = df_fitment.values.tolist()directions = df_direction.index.tolist()count2 = df_direction.values.tolist()bar = ( Bar() .add_xaxis(fitment) .add_yaxis('', count1, category_gap = '50%') .reversal_axis() .set_series_opts(label_opts=opts.LabelOpts(position='right')) .set_global_opts( xaxis_opts=opts.AxisOpts(name='数量'), title_opts=opts.TitleOpts(title='装修情况/有无电梯玫瑰图(组合图)',pos_left='33%',pos_top="5%"), legend_opts=opts.LegendOpts(type_="scroll", pos_left="90%",pos_top="58%",orient="vertical") ))c2 = ( Pie(init_opts=opts.InitOpts( width='800px', height='600px', ) ) .add( '', [list(z) for z in zip(directions, count2)], radius=['10%', '30%'], center=['75%', '65%'], rosetype="radius", label_opts=opts.LabelOpts(is_show=True), ) .set_global_opts(title_opts=opts.TitleOpts(title='有/无电梯',pos_left='33%',pos_top="5%"), legend_opts=opts.LegendOpts(type_="scroll", pos_left="90%",pos_top="15%",orient="vertical") ) .set_series_opts(label_opts=opts.LabelOpts(formatter='{b}:{c} \n ({d}%)'),position="outside") )bar.overlap(c2)bar.render_notebook()
二手房楼层分布柱状缩放图
floor = df_floor.index.tolist()count = df_floor.values.tolist()bar = ( Bar() .add_xaxis(floor) .add_yaxis('数量', count) .set_global_opts( title_opts=opts.TitleOpts(title='二手房楼层分布柱状缩放图'), yaxis_opts=opts.AxisOpts(name='数量'), xaxis_opts=opts.AxisOpts(name='楼层'), datazoom_opts=opts.DataZoomOpts(type_='slider') ))bar.render_notebook()
房屋面积分布纵向柱状图
area = df_area.index.tolist()count = df_area.values.tolist()bar = ( Bar() .add_xaxis(area) .add_yaxis('数量', count) .reversal_axis() .set_series_opts(label_opts=opts.LabelOpts(position="right")) .set_global_opts( title_opts=opts.TitleOpts(title='房屋面积分布纵向柱状图'), yaxis_opts=opts.AxisOpts(name='面积(㎡)'), xaxis_opts=opts.AxisOpts(name='数量'), ))bar.render_notebook()
"Python爬虫入门案例之实现爬取二手房源数据"的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注网站,小编将为大家输出更多高质量的实用文章!
数据
数量
价格
楼层
电梯
二手房
面积
模块
柱状
情况
小区
房屋
房源
案例
爬虫
内容
城区
年份
户型
标题
数据库的安全要保护哪些东西
数据库安全各自的含义是什么
生产安全数据库录入
数据库的安全性及管理
数据库安全策略包含哪些
海淀数据库安全审计系统
建立农村房屋安全信息数据库
易用的数据库客户端支持安全管理
连接数据库失败ssl安全错误
数据库的锁怎样保障安全
网络安全未来的问题和对策
济南有实力的存储服务器经销商
马红杰网络安全
还原sql数据库指令
衡水企业软件开发哪家好
正规的浪潮服务器经销商
浪潮软件开发的软件
java修改数据库难吗
网络安全面试问啥
宝山区优势网络技术质量服务
无限软件开发费用是多少
it项目软件开发管理
天拓网络技术
网络技术专业学什么好
华为从事软件开发需要什么条件
安全防控软件开发项目合同书
怎么将文档弄到数据库
环保软件开发
珠海市网络安全攻防演练
dell服务器阵列卡配置
湖南惠普服务器虚拟化优化
深圳市云商网络技术
腾讯云数据库交付运维工程师
网络安全证书照片相框
简单电脑小型数据库
2年级网络安全图画大全
敦煌遗书数据库项目
黎明觉醒服务器会爆满么
数字政府网络安全
服务器 安全狗 远程