千家信息网

Flink 1.11新特性之SQL Hive Streaming的示例分析

发表于:2024-11-20 作者:千家信息网编辑
千家信息网最后更新 2024年11月20日,这篇文章主要介绍了Flink 1.11新特性之SQL Hive Streaming的示例分析,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一
千家信息网最后更新 2024年11月20日Flink 1.11新特性之SQL Hive Streaming的示例分析

这篇文章主要介绍了Flink 1.11新特性之SQL Hive Streaming的示例分析,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。



添加相关依赖


测试集群上的 Hive 版本为 1.1.0,Hadoop 版本为 2.6.0,Kafka 版本为 1.0.1。

  2.11  1.11.0  2.6.5-10.0  1.1.0
org.apache.flink flink-streaming-scala_${scala.bin.version} ${flink.version} org.apache.flink flink-clients_${scala.bin.version} ${flink.version} org.apache.flink flink-table-common ${flink.version} org.apache.flink flink-table-api-scala-bridge_${scala.bin.version} ${flink.version} org.apache.flink flink-table-planner-blink_${scala.bin.version} ${flink.version} org.apache.flink flink-connector-hive_${scala.bin.version} ${flink.version} org.apache.flink flink-sql-connector-kafka_${scala.bin.version} ${flink.version} org.apache.flink flink-json ${flink.version} org.apache.flink flink-shaded-hadoop-2-uber ${flink-shaded-hadoop.version} org.apache.hive hive-exec ${hive.version}

另外,别忘了找到 hdfs-site.xml 和 hive-site.xml,并将其加入项目。

创建执行环境


Flink 1.11 的 Table/SQL API 中,FileSystem Connector 是靠增强版 StreamingFileSink 组件实现,在源码中名为 StreamingFileWriter。我们知道,只有在 Checkpoint 成功时,StreamingFileSink 写入的文件才会由 Pending 状态变成 Finished 状态,从而能够安全地被下游读取。所以,我们一定要打开 Checkpointing,并设定合理的间隔。

val streamEnv = StreamExecutionEnvironment.getExecutionEnvironmentstreamEnv.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)streamEnv.setParallelism(3)
val tableEnvSettings = EnvironmentSettings.newInstance() .useBlinkPlanner() .inStreamingMode() .build()val tableEnv = StreamTableEnvironment.create(streamEnv, tableEnvSettings)tableEnv.getConfig.getConfiguration.set(ExecutionCheckpointingOptions.CHECKPOINTING_MODE, CheckpointingMode.EXACTLY_ONCE)tableEnv.getConfig.getConfiguration.set(ExecutionCheckpointingOptions.CHECKPOINTING_INTERVAL, Duration.ofSeconds(20))
        

注册 HiveCatalog


val catalogName = "my_catalog"val catalog = new HiveCatalog(  catalogName,              // catalog name  "default",                // default database  "/Users/lmagic/develop",  // Hive config (hive-site.xml) directory  "1.1.0"                   // Hive version)tableEnv.registerCatalog(catalogName, catalog)tableEnv.useCatalog(catalogName)


创建 Kafka 流表


Kafka Topic 中存储的是 JSON 格式的埋点日志,建表时用计算列生成事件时间与水印。1.11 版本 SQL Kafka Connector 的参数相比 1.10 版本有一定简化。

tableEnv.executeSql("CREATE DATABASE IF NOT EXISTS stream_tmp")tableEnv.executeSql("DROP TABLE IF EXISTS stream_tmp.analytics_access_log_kafka")
tableEnv.executeSql( """ |CREATE TABLE stream_tmp.analytics_access_log_kafka ( | ts BIGINT, | userId BIGINT, | eventType STRING, | fromType STRING, | columnType STRING, | siteId BIGINT, | grouponId BIGINT, | partnerId BIGINT, | merchandiseId BIGINT, | procTime AS PROCTIME(), | eventTime AS TO_TIMESTAMP(FROM_UNIXTIME(ts / 1000,'yyyy-MM-dd HH:mm:ss')), | WATERMARK FOR eventTime AS eventTime - INTERVAL '15' SECOND |) WITH ( | 'connector' = 'kafka', | 'topic' = 'ods_analytics_access_log', | 'properties.bootstrap.servers' = 'kafka110:9092,kafka111:9092,kafka112:9092' | 'properties.group.id' = 'flink_hive_integration_exp_1', | 'scan.startup.mode' = 'latest-offset', | 'format' = 'json', | 'json.fail-on-missing-field' = 'false', | 'json.ignore-parse-errors' = 'true' |) """.stripMargin)

前面已经注册了 HiveCatalog,故在 Hive 中可以观察到创建的 Kafka 流表的元数据(注意该表并没有事实上的列)。

hive> DESCRIBE FORMATTED stream_tmp.analytics_access_log_kafka;OK# col_name              data_type               comment

# Detailed Table InformationDatabase: stream_tmpOwner: nullCreateTime: Wed Jul 15 18:25:09 CST 2020LastAccessTime: UNKNOWNProtect Mode: NoneRetention: 0Location: hdfs://sht-bdmq-cls/user/hive/warehouse/stream_tmp.db/analytics_access_log_kafkaTable Type: MANAGED_TABLETable Parameters: flink.connector kafka flink.format json flink.json.fail-on-missing-field false flink.json.ignore-parse-errors true flink.properties.bootstrap.servers kafka110:9092,kafka111:9092,kafka112:9092 flink.properties.group.id flink_hive_integration_exp_1 flink.scan.startup.mode latest-offset flink.schema.0.data-type BIGINT flink.schema.0.name ts flink.schema.1.data-type BIGINT flink.schema.1.name userId flink.schema.10.data-type TIMESTAMP(3) flink.schema.10.expr TO_TIMESTAMP(FROM_UNIXTIME(`ts` / 1000, 'yyyy-MM-dd HH:mm:ss')) flink.schema.10.name eventTime flink.schema.2.data-type VARCHAR(2147483647) flink.schema.2.name eventType # 略...... flink.schema.9.data-type TIMESTAMP(3) NOT NULL flink.schema.9.expr PROCTIME() flink.schema.9.name procTime flink.schema.watermark.0.rowtime eventTime flink.schema.watermark.0.strategy.data-type TIMESTAMP(3) flink.schema.watermark.0.strategy.expr `eventTime` - INTERVAL '15' SECOND flink.topic ods_analytics_access_log is_generic true transient_lastDdlTime 1594808709
# Storage InformationSerDe Library: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDeInputFormat: org.apache.hadoop.mapred.TextInputFormatOutputFormat: org.apache.hadoop.hive.ql.io.IgnoreKeyTextOutputFormatCompressed: NoNum Buckets: -1Bucket Columns: []Sort Columns: []Storage Desc Params: serialization.format 1Time taken: 1.797 seconds, Fetched: 61 row(s)

创建 Hive 表


Flink SQL 提供了兼容 HiveQL 风格的 DDL,指定 SqlDialect.HIVE 即可( DML 兼容还在开发中)。

为了方便观察结果,以下的表采用了天/小时/分钟的三级分区,实际应用中可以不用这样细的粒度(10分钟甚至1小时的分区可能更合适)。

tableEnv.getConfig.setSqlDialect(SqlDialect.HIVE)
tableEnv.executeSql("CREATE DATABASE IF NOT EXISTS hive_tmp")tableEnv.executeSql("DROP TABLE IF EXISTS hive_tmp.analytics_access_log_hive")
tableEnv.executeSql( """ |CREATE TABLE hive_tmp.analytics_access_log_hive ( | ts BIGINT, | user_id BIGINT, | event_type STRING, | from_type STRING, | column_type STRING, | site_id BIGINT, | groupon_id BIGINT, | partner_id BIGINT, | merchandise_id BIGINT |) PARTITIONED BY ( | ts_date STRING, | ts_hour STRING, | ts_minute STRING |) STORED AS PARQUET |TBLPROPERTIES ( | 'sink.partition-commit.trigger' = 'partition-time', | 'sink.partition-commit.delay' = '1 min', | 'sink.partition-commit.policy.kind' = 'metastore,success-file', | 'partition.time-extractor.timestamp-pattern' = '$ts_date $ts_hour:$ts_minute:00' |) """.stripMargin)

Hive 表的参数复用了 SQL FileSystem Connector 的相关参数,与分区提交(Partition Commit)密切相关。仅就上面出现的4个参数简单解释一下。

  • sink.partition-commit.trigger :触发分区提交的时间特征。默认为 processing-time,即处理时间,很显然在有延迟的情况下,可能会造成数据分区错乱。所以这里使用 partition-time,即按照分区时间戳(即分区内数据对应的事件时间)来提交。
  • partition.time-extractor.timestamp-pattern :分区时间戳的抽取格式。需要写成 yyyy-MM-dd HH:mm:ss 的形式,并用 Hive 表中相应的分区字段做占位符替换。显然,Hive 表的分区字段值来自流表中定义好的事件时间,后面会看到。
  • sink.partition-commit.delay :触发分区提交的延迟。在时间特征设为 partition-time 的情况下,当水印时间戳大于分区创建时间加上此延迟时,分区才会真正提交。此值最好与分区粒度相同,例如若 Hive 表按1小时分区,此参数可设为 1 h,若按 10 分钟分区,可设为 10 min。
  • sink.partition-commit.policy.kind :分区提交策略,可以理解为使分区对下游可见的附加操作。 metastore 表示更新 Hive Metastore 中的表元数据, success-file 则表示在分区内创建 _SUCCESS 标记文件。

当然,SQL FileSystem Connector 的功能并不限于此,还有很大自定义的空间(如可以自定义分区提交策略以合并小文件等)。具体可参见官方文档。

https://ci.apache.org/projects/flink/flink-docs-release-1.11/dev/table/connectors/filesystem.html#streaming-sink

流式写入 Hive


注意将流表中的事件时间转化为 Hive 的分区。

tableEnv.getConfig.setSqlDialect(SqlDialect.DEFAULT)tableEnv.executeSql(  """    |INSERT INTO hive_tmp.analytics_access_log_hive    |SELECT    |  ts,userId,eventType,fromType,columnType,siteId,grouponId,partnerId,merchandiseId,    |  DATE_FORMAT(eventTime,'yyyy-MM-dd'),    |  DATE_FORMAT(eventTime,'HH'),    |  DATE_FORMAT(eventTime,'mm')    |FROM stream_tmp.analytics_access_log_kafka    |WHERE merchandiseId > 0  """.stripMargin)

来观察一下流式 Sink 的结果吧。


上文设定的 Checkpoint Interval 是 20 秒,可以看到,上图中的数据文件恰好是以 20 秒的间隔写入的。由于并行度为 3,所以每次写入会生成 3 个文件。分区内所有数据写入完毕后,会同时生成 _SUCCESS 文件。如果是正在写入的分区,则会看到 .inprogress 文件。

通过 Hive 查询一下,确定数据的时间无误。

            
hive> SELECT from_unixtime(min(cast(ts / 1000 AS BIGINT))),from_unixtime(max(cast(ts / 1000 AS BIGINT)))    > FROM hive_tmp.analytics_access_log_hive    > WHERE ts_date = '2020-07-15' AND ts_hour = '23' AND ts_minute = '23';OK2020-07-15 23:23:00 2020-07-15 23:23:59Time taken: 1.115 seconds, Fetched: 1 row(s)

流式读取 Hive


要将 Hive 表作为流式 Source,需要启用 Dynamic Table Options,并通过 Table Hints 来指定 Hive 数据流的参数。以下是简单地通过 Hive 计算商品 PV 的例子。

            
tableEnv.getConfig.getConfiguration.setBoolean(TableConfigOptions.TABLE_DYNAMIC_TABLE_OPTIONS_ENABLED, true)
val result = tableEnv.sqlQuery( """ |SELECT merchandise_id,count(1) AS pv |FROM hive_tmp.analytics_access_log_hive |/*+ OPTIONS( | 'streaming-source.enable' = 'true', | 'streaming-source.monitor-interval' = '1 min', | 'streaming-source.consume-start-offset' = '2020-07-15 23:30:00' |) */ |WHERE event_type = 'shtOpenGoodsDetail' |AND ts_date >= '2020-07-15' |GROUP BY merchandise_id |ORDER BY pv DESC LIMIT 10 """.stripMargin)
result.toRetractStream[Row].print().setParallelism(1)streamEnv.execute()

三个 Table Hint 参数的含义解释如下。

  • streaming-source.enable:设为 true,表示该 Hive 表可以作为 Source。
  • streaming-source.monitor-interval:感知 Hive 表新增数据的周期,以上设为 1 分钟。对于分区表而言,则是监控新分区的生成,以增量读取数据。
  • streaming-source.consume-start-offset:开始消费的时间戳,同样需要写成 yyyy-MM-dd HH:mm:ss 的形式。

更加具体的说明仍然可参见官方文档。

https://links.jianshu.com/go?to=https%3A%2F%2Fci.apache.org%2Fprojects%2Fflink%2Fflink-docs-release-1.11%2Fdev%2Ftable%2Fhive%2Fhive_streaming.html%23streaming-reading
最后,由于 SQL 语句中有 ORDER BY 和 LIMIT 逻辑,所以需要调用 toRetractStream() 方法转化为回撤流,即可输出结果。

感谢你能够认真阅读完这篇文章,希望小编分享的"Flink 1.11新特性之SQL Hive Streaming的示例分析"这篇文章对大家有帮助,同时也希望大家多多支持,关注行业资讯频道,更多相关知识等着你来学习!

0