Python Matplotlib如何绘制多子图
发表于:2025-01-18 作者:千家信息网编辑
千家信息网最后更新 2025年01月18日,这篇文章将为大家详细讲解有关Python Matplotlib如何绘制多子图,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。通过获取子图的label和线型来合并图例注
千家信息网最后更新 2025年01月18日Python Matplotlib如何绘制多子图
这篇文章将为大家详细讲解有关Python Matplotlib如何绘制多子图,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。
通过获取子图的label和线型来合并图例
注意添加label
#导入数据(读者可忽略)pre_lp=total_res#组合模型true=diff1[-pre_day:]#真实值pre_ph=results_data["yhat"]#prophetpre_lstm=reslut#lstmpre_ari=data_ari['data_pre']#arima#设置中文字体rcParams['font.sans-serif'] = 'kaiti'# 生成一个时间序列 (读者可根据情况进行修改或删除)time =pd.to_datetime(np.arange(0,21), unit='D', origin=pd.Timestamp('2021-10-19'))#创建画布fig=plt.figure(figsize=(20,16))#figsize为画布大小# 1 ax1=fig.add_subplot(221)ax1.plot(time,pre_lp,color='#1bb9f6',marker='^',linestyle='-',label='1')# ax1.plot(time,true,color='#fd5749',marker='s',linestyle='-',label='true')ax1.set_title('1',fontsize=15)#设置标题ax1.set_xlabel('日期/天',fontsize=15)#设置横坐标名称ax1.set_ylabel('感染人数/人',fontsize=15)#设置纵坐标名称ax1.xaxis.set_major_formatter(mdate.DateFormatter('%m-%d'))#设置横坐标刻度(读者可忽略)plt.xticks(pd.date_range(time[0],time[-1],freq='D'),rotation=45)#设置横坐标刻度(读者可忽略)# 2 ax2=fig.add_subplot(222)ax2.plot(time,pre_ph,color='#739b06',marker='o',linestyle='-',label='2')# ax2.plot(time,true,color='#fd5749',marker='s',linestyle='-',label='true')ax2.set_title('2',fontsize=15)ax2.set_xlabel('日期/天',fontsize=15)ax2.set_ylabel('感染人数/人',fontsize=15)ax2.xaxis.set_major_formatter(mdate.DateFormatter('%m-%d'))plt.xticks(pd.date_range(time[0],time[-1],freq='D'),rotation=45)# 3 ax3=fig.add_subplot(223)ax3.plot(time,pre_lstm,color='#38d9a9',marker='*',linestyle='-',label='3')# ax3.plot(time,true,color='#fd5749',marker='s',linestyle='-',label='true')ax3.set_title('3',fontsize=15)ax3.set_xlabel('日期/天',fontsize=15)ax3.set_ylabel('感染人数/人',fontsize=15)ax3.xaxis.set_major_formatter(mdate.DateFormatter('%m-%d'))plt.xticks(pd.date_range(time[0],time[-1],freq='D'),rotation=45)# 4 ax4=fig.add_subplot(224)ax4.plot(time,pre_ari,color='#e666ff',marker='x',linestyle='-',label='4')ax4.plot(time,true,color='#fd5749',marker='s',linestyle='-',label='true')ax4.set_title('4',fontsize=15)ax4.set_xlabel('日期/天',fontsize=15)ax4.set_ylabel('感染人数/人',fontsize=15)ax4.xaxis.set_major_formatter(mdate.DateFormatter('%m-%d'))plt.xticks(pd.date_range(time[0],time[-1],freq='D'),rotation=45)#初始化labels和线型数组lines=[]labels=[]#通过循环获取线型和labelsfor ax in fig.axes: axLine, axLabel = ax.get_legend_handles_labels() lines.extend(axLine) labels.extend(axLabel)#设置图例和调整图例位置fig.legend(lines, labels,loc='lower center', ncol=5,framealpha=False,fontsize=25)
结果如下图
这个时候我们再把原先代码里面的通过循环获取label和线型注释掉,代码如下
#导入数据(读者可忽略)pre_lp=total_res#组合模型true=diff1[-pre_day:]#真实值pre_ph=results_data["yhat"]#prophetpre_lstm=reslut#lstmpre_ari=data_ari['data_pre']#arima#设置中文字体rcParams['font.sans-serif'] = 'kaiti'# 生成一个时间序列 (读者可根据情况进行修改或删除)time =pd.to_datetime(np.arange(0,21), unit='D', origin=pd.Timestamp('2021-10-19'))#创建画布fig=plt.figure(figsize=(20,16))#figsize为画布大小# 1 ax1=fig.add_subplot(221)ax1.plot(time,pre_lp,color='#1bb9f6',marker='^',linestyle='-',label='1')ax1.plot(time,true,color='#fd5749',marker='s',linestyle='-',label='true')ax1.set_title('1',fontsize=15)#设置标题ax1.set_xlabel('日期/天',fontsize=15)#设置横坐标名称ax1.set_ylabel('感染人数/人',fontsize=15)#设置纵坐标名称ax1.xaxis.set_major_formatter(mdate.DateFormatter('%m-%d'))#设置横坐标刻度(读者可忽略)plt.xticks(pd.date_range(time[0],time[-1],freq='D'),rotation=45)#设置横坐标刻度(读者可忽略)# 2 ax2=fig.add_subplot(222)ax2.plot(time,pre_ph,color='#739b06',marker='o',linestyle='-',label='2')ax2.plot(time,true,color='#fd5749',marker='s',linestyle='-',label='true')ax2.set_title('2',fontsize=15)ax2.set_xlabel('日期/天',fontsize=15)ax2.set_ylabel('感染人数/人',fontsize=15)ax2.xaxis.set_major_formatter(mdate.DateFormatter('%m-%d'))plt.xticks(pd.date_range(time[0],time[-1],freq='D'),rotation=45)# 3 ax3=fig.add_subplot(223)ax3.plot(time,pre_lstm,color='#38d9a9',marker='*',linestyle='-',label='3')ax3.plot(time,true,color='#fd5749',marker='s',linestyle='-',label='true')ax3.set_title('3',fontsize=15)ax3.set_xlabel('日期/天',fontsize=15)ax3.set_ylabel('感染人数/人',fontsize=15)ax3.xaxis.set_major_formatter(mdate.DateFormatter('%m-%d'))plt.xticks(pd.date_range(time[0],time[-1],freq='D'),rotation=45)# 4 ax4=fig.add_subplot(224)ax4.plot(time,pre_ari,color='#e666ff',marker='x',linestyle='-',label='4')ax4.plot(time,true,color='#fd5749',marker='s',linestyle='-',label='true')ax4.set_title('4',fontsize=15)ax4.set_xlabel('日期/天',fontsize=15)ax4.set_ylabel('感染人数/人',fontsize=15)ax4.xaxis.set_major_formatter(mdate.DateFormatter('%m-%d'))plt.xticks(pd.date_range(time[0],time[-1],freq='D'),rotation=45)#初始化labels和线型数组# lines=[]# labels=[]#通过循环获取线型和labels# for ax in fig.axes:# axLine, axLabel = ax.get_legend_handles_labels()# lines.extend(axLine)# labels.extend(axLabel)#设置图例和调整图例位置fig.legend(lines, labels,loc='lower center', ncol=5,framealpha=False,fontsize=25)
结果如下图
调整子图间距
plt.subplots_adjust(wspace=0.4,hspace=0.4)
wspace为子图之间宽间距,hspace为子图之间高间距
对比图如下
设置了间距的图像
没有设置间距的图像
关于"Python Matplotlib如何绘制多子图"这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,使各位可以学到更多知识,如果觉得文章不错,请把它分享出去让更多的人看到。
人数
日期
读者
横坐标
线型
图例
间距
刻度
名称
画布
篇文章
循环
调整
多子
中文字体
之间
代码
位置
图像
大小
数据库的安全要保护哪些东西
数据库安全各自的含义是什么
生产安全数据库录入
数据库的安全性及管理
数据库安全策略包含哪些
海淀数据库安全审计系统
建立农村房屋安全信息数据库
易用的数据库客户端支持安全管理
连接数据库失败ssl安全错误
数据库的锁怎样保障安全
什么情况下使用分布式数据库
马云去美国接触互联网科技
食品安全表格数据库
小程序云数据库字段在哪里
中级网络安全工程师待遇怎样
ios 数据库fmdb
河南软件开发工程
海信软件开发工作
地理数据库和矢量文件一样吗
string插入数据库乱码
公安机关人口数据库的重要性
日志审计服务器性能参数详解
电脑服务器含显示器
上海软件开发月工资
嘉定区正规网络技术服务哪里好
哈尔滨淘宝软件开发
网络技术负面
景德镇正规服务器哪家做的好
网页mysql数据库
数据怎么删除重复的数据库
怎么查看远程服务器连接记录
linux服务器路由配置
把数据库导入java
哪个dns服务器好
网络安全里的SET是什么意思
数据库日志归档是什么意思
网络安全等级评定费
出库入库数据库建立
高职网络安全专业代码
计算机网络技术对接大学