千家信息网

Python编程如何使用matplotlib绘制动态圆锥曲线

发表于:2025-01-19 作者:千家信息网编辑
千家信息网最后更新 2025年01月19日,这篇文章主要介绍了Python编程如何使用matplotlib绘制动态圆锥曲线,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。作为让高中
千家信息网最后更新 2025年01月19日Python编程如何使用matplotlib绘制动态圆锥曲线

这篇文章主要介绍了Python编程如何使用matplotlib绘制动态圆锥曲线,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。

作为让高中生心脏骤停的四个字,对于高考之后的人来说可谓刻骨铭心,所以定义不再赘述,直接撸图,其标准方程分别为

在Python中,绘制动图需要用到matplotlib中的animation包,其调用方法以及接下来要用到的参数为

ani = animation.FuncAnimation(fig, func, frames, interval)

其中fig为绘图窗口,func为绘图函数,其返回值为图像,frames为迭代参数,如果为整型的话,其迭代参数则为range(frames)

椭圆

为了绘图方便,椭圆的参数方程为

代码为:

# 这三个包在后面的程序中不再复述import numpy as npimport matplotlib.pyplot as pltimport matplotlib.animation as animationa,b,c = 5,3,4fig = plt.figure(figsize=(12,9))ax = fig.add_subplot(autoscale_on=False,     xlim=(-a,a),ylim=(-b,b))ax.grid()line, = ax.plot([],[],'o-',lw=2)trace, = ax.plot([],[],'-', lw=1)theta_text = ax.text(0.02,0.85,'',transform=ax.transAxes)textTemplate = '''theta = %.1f°\nlenL = %.1f, lenR = %.1f\nlenL+lenR = %.1f'''xs,ys = [], []def animate(i):    if(i==0):        xs.clear()        ys.clear()    theta = i*0.04    x = a*np.cos(theta)    y = b*np.sin(theta)    xs.append(x)    ys.append(y)    line.set_data([-c,x,c], [0,y,0])    trace.set_data(xs,ys)    lenL = np.sqrt((x+c)**2+y**2)    lenR = np.sqrt((x-c)**2+y**2)    theta_text.set_text(textTemplate %         (180*theta/np.pi, lenL, lenR, lenL+lenR))    return line, trace, theta_textani = animation.FuncAnimation(fig, animate, 157,     interval=5, blit=True)ani.save("ellipse.gif")plt.show()

双曲线

双曲线的参数方程为

设 a = 4 , b = 3 , c = 5 则代码如下

a,b,c = 4,3,5fig = plt.figure(figsize=(12,9))ax = fig.add_subplot(autoscale_on=False,     xlim=(-c,16),ylim=(-12,12))ax.grid()line, = ax.plot([],[],'o-',lw=2)trace, = ax.plot([],[],'-', lw=1)theta_text = ax.text(0.01,0.85,'',    transform=ax.transAxes)textTemplate = '''t = %.1f\nlenL = %.1f, lenR = %.1f\nlenL-lenR = %.1f'''xs,ys = [],[]def animate(t):    if(t==-3):        xs.clear()        ys.clear()    x = a*np.cosh(t)    y = b*np.sinh(t)    xs.append(x)    ys.append(y)    line.set_data([-c,x,c], [0,y,0])    trace.set_data(xs,ys)    lenL = np.sqrt((x+c)**2+y**2)    lenR = np.sqrt((x-c)**2+y**2)    theta_text.set_text(textTemplate %         (t, lenL, lenL, lenL-lenR))    return line, trace, theta_textframes = np.arange(-3,3,0.05)ani = animation.FuncAnimation(fig, animate,     frames, interval=5, blit=True)ani.save("hyperbola.gif")plt.show()

抛物线

import numpy as npimport matplotlib.pyplot as pltimport matplotlib.animation as animationa,b,c = 4,3,5p = 1fig = plt.figure(figsize=(12,9))ax = fig.add_subplot(autoscale_on=False,     xlim=(-0.6,4.5),ylim=(-3,3))ax.grid()ax.plot([-p/2,-p/2],[-5,5],'-',lw=2)line, = ax.plot([],[],'o-',lw=2)trace, = ax.plot([],[],'-', lw=1)theta_text = ax.text(0.05,0.85,'',    transform=ax.transAxes)textTemplate = '''y = %.1f\nlenL = %.1f, lenF = %.1f\nlenL-lenF = %.1f'''xs,ys = [],[]def animate(y):    if(y==-3):        xs.clear()        ys.clear()    x = y**2/p/2    xs.append(x)    ys.append(y)    line.set_data([-p,x,p/2], [y,y,0])    trace.set_data(xs,ys)    lenL = x+p/2    lenF = np.sqrt((x-p/2)**2+y**2)    theta_text.set_text(textTemplate %         (y, lenL, lenF, lenL-lenF))    return line, trace, theta_textframes = np.arange(-3,3,0.1)ani = animation.FuncAnimation(fig, animate,     frames, interval=5, blit=True)ani.save("parabola.gif")plt.show()

极坐标方程

圆锥曲线在极坐标系下有相同的表达式,即

matplotlib中,极坐标图像需要通过projection='polar'来标识,其代码为

p = 2fig = plt.figure(figsize=(12,9))ax = fig.add_subplot(autoscale_on=False, projection='polar')ax.set_rlim(0,8)trace, = ax.plot([],[],'-', lw=1)theta_text = ax.text(0.05,0.95,'',transform=ax.transAxes)textTemplate = 'e = %.1f\n'theta = np.arange(-3.1,3.2,0.1)def animate(e):    rho = p/(1-e*np.cos(theta))    trace.set_data(theta,rho)    theta_text.set_text(textTemplate % e)    return trace, theta_textframes = np.arange(-2,2,0.1)ani = animation.FuncAnimation(fig, animate,     frames, interval=100, blit=True)ani.save("polar.gif")plt.show()

感谢你能够认真阅读完这篇文章,希望小编分享的"Python编程如何使用matplotlib绘制动态圆锥曲线"这篇文章对大家有帮助,同时也希望大家多多支持,关注行业资讯频道,更多相关知识等着你来学习!

0