千家信息网

MongoDB中什么情况下索引会选择策略

发表于:2025-01-18 作者:千家信息网编辑
千家信息网最后更新 2025年01月18日,这篇"MongoDB中什么情况下索引会选择策略"文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看
千家信息网最后更新 2025年01月18日MongoDB中什么情况下索引会选择策略

这篇"MongoDB中什么情况下索引会选择策略"文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇"MongoDB中什么情况下索引会选择策略"文章吧。

一、MongoDB如何选择索引

如果我们在Collection建了5个index,那么当我们查询的时候,MongoDB会根据查询语句的筛选条件、sort排序等来定位可以使用的index作为候选索引;然后MongoDB会创建对应数量的查询计划,并分别使用不同线程执行查询计划,最终会选择一个执行最快的index;但是这个选择也不是一成不变的,后续还会有一段时间根据实际执行情况动态调整;

二、数据准备

for(let i = 0;i<1000000;i++){    db.users.insertOne({        "id":i,        "name":'user'+i,        "age":Math.floor(Math.random()*120),        "created":new Date(ISODate().getTime() - 1000 * 60*i)    });}

三、正则对index的使用

MongoDB支持正则查询,在特定的情况其也是可以利用index获得查询性能的提升;

虽然MongDB执行正则会最大限度的使用index,但是不同的用法还是会影响对index的利用程度的;

执行以下普通正则表达式

从queryPlanner.winningPlan部分的COLLSCAN,可以看到正则表达式默认会进行全表的扫描;

从executionStats.executionStages部分可以看到COLLSCAN共扫描了1000000个文档,并返回1111个文档,总耗时794ms;

db.users.find({    name:/user999/    }).explain('executionStats')    {    "queryPlanner" : {        "plannerVersion" : 1,        "namespace" : "test.users",        "indexFilterSet" : false,                "winningPlan" : {            "stage" : "COLLSCAN",            "filter" : {                "name" : {                    "$regex" : "user999"                }            },            "direction" : "forward"        },        "rejectedPlans" : [ ]    },    "executionStats" : {        "executionSuccess" : true,        "nReturned" : 1111,        "executionTimeMillis" : 909,        "totalKeysExamined" : 0,        "totalDocsExamined" : 1000000,        "executionStages" : {            "stage" : "COLLSCAN",            "filter" : {                "name" : {                    "$regex" : "user999"                }            },            "nReturned" : 1111,            "executionTimeMillisEstimate" : 794,            "works" : 1000002,            "advanced" : 1111,            "needTime" : 998890,            "needYield" : 0,            "saveState" : 7830,            "restoreState" : 7830,            "isEOF" : 1,            "invalidates" : 0,            "direction" : "forward",            "docsExamined" : 1000000        }    }}

创建一个包含name的index;

db.users.createIndex({name:1})

再次执行上边的查询,可以看到使用了我们新建的name_1索引;但是从执行状态来看,还是扫描了全体的索引的key,并不能很好的利用index;

{    "queryPlanner" : {        "plannerVersion" : 1,        "namespace" : "test.users",        "indexFilterSet" : false,        "parsedQuery" : {            "name" : {                "$regex" : "user999"            }        },        "winningPlan" : {            "stage" : "FETCH",            "inputStage" : {                "stage" : "IXSCAN",                "filter" : {                    "name" : {                        "$regex" : "user999"                    }                },                "keyPattern" : {                    "name" : 1                },                "indexName" : "name_1"                            }        },        "rejectedPlans" : [ ]    },    "executionStats" : {        "executionSuccess" : true,        "nReturned" : 1111,        "executionTimeMillis" : 971,        "totalKeysExamined" : 1000000,        "totalDocsExamined" : 1111,        "executionStages" : {            "stage" : "FETCH",            "nReturned" : 1111,            "executionTimeMillisEstimate" : 887,                        "docsExamined" : 1111,            "alreadyHasObj" : 0,            "inputStage" : {                "stage" : "IXSCAN",                "filter" : {                    "name" : {                        "$regex" : "user999"                    }                },                "nReturned" : 1111,                "executionTimeMillisEstimate" : 876,                              "keyPattern" : {                    "name" : 1                },                "indexName" : "name_1",                              "keysExamined" : 1000000            }        }    }}

使用前缀匹配的话可以最大限度的利用index,从执行状态可以看到只检测了1111个index key;

db.users.find({    name:/^user999/    }).explain('executionStats')    {    "queryPlanner" : {        "plannerVersion" : 1,        "namespace" : "test.users",        "indexFilterSet" : false,        "parsedQuery" : {            "name" : {                "$regex" : "^user999"            }        },        "winningPlan" : {            "stage" : "FETCH",            "inputStage" : {                "stage" : "IXSCAN",                "keyPattern" : {                    "name" : 1                },                "indexName" : "name_1"                            }        },        "rejectedPlans" : [ ]    },    "executionStats" : {        "executionSuccess" : true,        "nReturned" : 1111,        "executionTimeMillis" : 2,        "totalKeysExamined" : 1111,        "totalDocsExamined" : 1111,        "executionStages" : {            "stage" : "FETCH",            "nReturned" : 1111,            "executionTimeMillisEstimate" : 0            "docsExamined" : 1111                        "inputStage" : {                "stage" : "IXSCAN",                "nReturned" : 1111,                "executionTimeMillisEstimate" : 0,                "indexName" : "name_1",                "keysExamined" : 1111            }        }    }}

即使是前缀匹配,如果忽略大小写的话也无法充分利用index了;

db.users.find({    name:/^user999/i    }).explain('executionStats')    {    "queryPlanner" : {        "plannerVersion" : 1,        "namespace" : "test.users",        "indexFilterSet" : false,        "parsedQuery" : {            "name" : {                "$regex" : "user999",                "$options" : "i"            }        },        "winningPlan" : {            "stage" : "FETCH",            "inputStage" : {                "stage" : "IXSCAN",                "filter" : {                    "name" : {                        "$regex" : "user999",                        "$options" : "i"                    }                },                "keyPattern" : {                    "name" : 1                },                "indexName" : "name_1"            }        },        "rejectedPlans" : [ ]    },    "executionStats" : {        "executionSuccess" : true,        "nReturned" : 1111,        "executionTimeMillis" : 943,        "totalKeysExamined" : 1000000,        "totalDocsExamined" : 1111,        "executionStages" : {            "stage" : "FETCH",            "nReturned" : 1111,            "executionTimeMillisEstimate" : 833,            "works" : 1000001,            "inputStage" : {                "stage" : "IXSCAN",                "filter" : {                    "name" : {                        "$regex" : "user999",                        "$options" : "i"                    }                },                "nReturned" : 1111,                "executionTimeMillisEstimate" : 833,                "keyPattern" : {                    "name" : 1                },                "indexName" : "name_1"                "keysExamined" : 1000000            }        }    }}

四、$or从句对索引的利用

MongoDB执行$or从句的时候,会将所有的从句作为逻辑的整体,要不就都使用index,要不就都进行全表扫描;

执行以下的查询语句;

db.users.find({    $or:[        {name:/^user666/},        {age:{$gte:80}}    ]    }).explain('executionStats')

在只有name_1这个index的时候,我们可以看到MongoDB进行了全表扫描,全表扫描的时候进行$or从句的过滤;

{    "queryPlanner" : {        "plannerVersion" : 1,        "namespace" : "test.users",        "indexFilterSet" : false,        "parsedQuery" : {            "$or" : [                {                    "age" : {                        "$gte" : 20                    }                },                {                    "name" : {                        "$regex" : "^user666"                    }                }            ]        },        "winningPlan" : {            "stage" : "SUBPLAN",            "inputStage" : {                "stage" : "COLLSCAN",                "filter" : {                    "$or" : [                        {                            "age" : {                                "$gte" : 20                            }                        },                        {                            "name" : {                                "$regex" : "^user666"                            }                        }                    ]                },                "direction" : "forward"            }        },        "rejectedPlans" : [ ]    },    "executionStats" : {        "executionSuccess" : true,        "nReturned" : 833995,        "executionTimeMillis" : 576,        "totalKeysExamined" : 0,        "totalDocsExamined" : 1000000,        "executionStages" : {            "stage" : "SUBPLAN",            "nReturned" : 833995,            "executionTimeMillisEstimate" : 447,                       "inputStage" : {                "stage" : "COLLSCAN",                "filter" : {                    "$or" : [                        {                            "age" : {                                "$gte" : 20                            }                        },                        {                            "name" : {                                "$regex" : "^user666"                            }                        }                    ]                },                "nReturned" : 833995,                "executionTimeMillisEstimate" : 447,                               "docsExamined" : 1000000            }        }    }}

我们对name字段新建一个index;

db.users.createIndex({age:1})

再次执行以上的查询语句,这次可以看到每个从句都利用了index,并且每个从句会单独执行并最终进行or操作;

{    "queryPlanner" : {        "plannerVersion" : 1,        "namespace" : "test.users",        "indexFilterSet" : false,        "parsedQuery" : {            "$or" : [                {                    "age" : {                        "$gte" : 80                    }                },                {                    "name" : {                        "$regex" : "^user666"                    }                }            ]        },        "winningPlan" : {            "stage" : "SUBPLAN",            "inputStage" : {                "stage" : "FETCH",                "inputStage" : {                    "stage" : "OR",                    "inputStages" : [                        {                            "stage" : "IXSCAN",                            "keyPattern" : {                                "name" : 1                            },                            "indexName" : "name_1",                            "isMultiKey" : false,                            "multiKeyPaths" : {                                "name" : [ ]                            },                            "isUnique" : false,                            "isSparse" : false,                            "isPartial" : false,                            "indexVersion" : 2,                            "direction" : "forward",                            "indexBounds" : {                                "name" : [                                    "[\"user666\", \"user667\")",                                    "[/^user666/, /^user666/]"                                ]                            }                        },                        {                            "stage" : "IXSCAN",                            "keyPattern" : {                                "age" : 1                            },                            "indexName" : "age_1",                            "isMultiKey" : false,                            "multiKeyPaths" : {                                "age" : [ ]                            },                            "isUnique" : false,                            "isSparse" : false,                            "isPartial" : false,                            "indexVersion" : 2,                            "direction" : "forward",                            "indexBounds" : {                                "age" : [                                    "[80.0, inf.0]"                                ]                            }                        }                    ]                }            }        },        "rejectedPlans" : [ ]    },    "executionStats" : {        "executionSuccess" : true,        "nReturned" : 333736,        "executionTimeMillis" : 741,        "totalKeysExamined" : 334102,        "totalDocsExamined" : 333736,        "executionStages" : {            "stage" : "SUBPLAN",            "nReturned" : 333736,            "executionTimeMillisEstimate" : 703,            "inputStage" : {                "stage" : "FETCH",                "nReturned" : 333736,                "executionTimeMillisEstimate" : 682                "docsExamined" : 333736,                                "inputStage" : {                    "stage" : "OR",                    "nReturned" : 333736,                    "executionTimeMillisEstimate" : 366,                    "inputStages" : [                        {                            "stage" : "IXSCAN",                            "nReturned" : 1111,                            "executionTimeMillisEstimate" : 0,                            "keyPattern" : {                                "name" : 1                            },                            "indexName" : "name_1",                            "indexBounds" : {                                "name" : [                                    "[\"user666\", \"user667\")",                                    "[/^user666/, /^user666/]"                                ]                            },                            "keysExamined" : 1112                        },                        {                            "stage" : "IXSCAN",                            "nReturned" : 332990,                            "executionTimeMillisEstimate" : 212,                                                      "keyPattern" : {                                "age" : 1                            },                            "indexName" : "age_1",                                                       "indexBounds" : {                                "age" : [                                    "[80.0, inf.0]"                                ]                            },                            "keysExamined" : 332990                        }                    ]                }            }        }    }}

五、sort对索引的利用

如果sort操作无法利用index,则MongoDB就会在内存中排序数据,并且数据量一大就会报错;

db.users.find().sort({created: -1}).explain('executionStats'){    "queryPlanner" : {        "plannerVersion" : 1,        "namespace" : "test.users",        "indexFilterSet" : false,        "parsedQuery" : {                    },        "winningPlan" : {            "stage" : "SORT",            "sortPattern" : {                "created" : -1            },            "inputStage" : {                "stage" : "SORT_KEY_GENERATOR",                "inputStage" : {                    "stage" : "COLLSCAN",                    "direction" : "forward"                }            }        },        "rejectedPlans" : [ ]    },    "executionStats" : {        "executionSuccess" : false,        "errorMessage" : "Exec error resulting in state FAILURE :: caused by :: Sort operation used more than the maximum 33554432 bytes of RAM. Add an index, or specify a smaller limit.",        "errorCode" : 96,        "nReturned" : 0,        "executionTimeMillis" : 959,        "totalKeysExamined" : 0,        "totalDocsExamined" : 361996,        "executionStages" : {            "stage" : "SORT",            "nReturned" : 0,            "executionTimeMillisEstimate" : 922,            "sortPattern" : {                "created" : -1            },            "memUsage" : 33554518,            "memLimit" : 33554432,            "inputStage" : {                "stage" : "SORT_KEY_GENERATOR",                "nReturned" : 361996,                "executionTimeMillisEstimate" : 590,                "inputStage" : {                    "stage" : "COLLSCAN",                    "nReturned" : 361996,                    "executionTimeMillisEstimate" : 147,                    "direction" : "forward",                    "docsExamined" : 361996                }            }        }    }}

如果是单字段index,sort从两个方向都可以充分利用index;可以看到MongoDB直接按照index的顺序返回结果,直接就没有sort阶段了;

db.users.find().sort({name: -1}).explain('executionStats')      {    "queryPlanner" : {        "plannerVersion" : 1,        "namespace" : "test.users",        "indexFilterSet" : false,        "parsedQuery" : {                    },        "winningPlan" : {            "stage" : "FETCH",            "inputStage" : {                "stage" : "IXSCAN",                "keyPattern" : {                    "name" : 1                },                "indexName" : "name_1",                "direction" : "backward",                "indexBounds" : {                    "name" : [                        "[MaxKey, MinKey]"                    ]                }            }        },        "rejectedPlans" : [ ]    },    "executionStats" : {        "executionSuccess" : true,        "nReturned" : 1000000,        "executionTimeMillis" : 1317,        "totalKeysExamined" : 1000000,        "totalDocsExamined" : 1000000,        "executionStages" : {            "stage" : "FETCH",            "nReturned" : 1000000,            "executionTimeMillisEstimate" : 1180,            "inputStage" : {                "stage" : "IXSCAN",                "nReturned" : 1000000,                "executionTimeMillisEstimate" : 560,                "keyPattern" : {                    "name" : 1                },                "indexName" : "name_1",                "isMultiKey" : false,                "multiKeyPaths" : {                    "name" : [ ]                },                "isUnique" : false,                "isSparse" : false,                "isPartial" : false,                "indexVersion" : 2,                "direction" : "backward",                "indexBounds" : {                    "name" : [                        "[MaxKey, MinKey]"                    ]                },                "keysExamined" : 1000000,                "seeks" : 1,                "dupsTested" : 0,                "dupsDropped" : 0,                "seenInvalidated" : 0            }        }    }}

对于复合索引,sort除了可以从整体上从两个方向利用index,也可以利用index的前缀索引和非前缀局部索引;

新建复合索引

db.users.createIndex({created:-1, name:1, age:1})

按照复合索引的反方向进行整体排序;

db.users.find().sort({created:1, name:-1, age:-1}).explain('executionStats'){    "queryPlanner" : {        "plannerVersion" : 1,        "namespace" : "test.users",        "indexFilterSet" : false,        "parsedQuery" : {                    },        "winningPlan" : {            "stage" : "FETCH",            "inputStage" : {                "stage" : "IXSCAN",                "keyPattern" : {                    "created" : -1,                    "name" : 1,                    "age" : 1                },                "indexName" : "created_-1_name_1_age_1",                "isMultiKey" : false,                "multiKeyPaths" : {                    "created" : [ ],                    "name" : [ ],                    "age" : [ ]                },                "isUnique" : false,                "isSparse" : false,                "isPartial" : false,                "indexVersion" : 2,                "direction" : "backward",                "indexBounds" : {                    "created" : [                        "[MinKey, MaxKey]"                    ],                    "name" : [                        "[MaxKey, MinKey]"                    ],                    "age" : [                        "[MaxKey, MinKey]"                    ]                }            }        },        "rejectedPlans" : [ ]    },    "executionStats" : {        "executionSuccess" : true,        "nReturned" : 1000000,        "executionTimeMillis" : 1518,        "totalKeysExamined" : 1000000,        "totalDocsExamined" : 1000000,        "executionStages" : {            "stage" : "FETCH",            "nReturned" : 1000000,            "executionTimeMillisEstimate" : 1364,            "docsExamined" : 1000000,            "inputStage" : {                "stage" : "IXSCAN",                "nReturned" : 1000000,                "executionTimeMillisEstimate" : 816,                "keyPattern" : {                    "created" : -1,                    "name" : 1,                    "age" : 1                },                "indexName" : "created_-1_name_1_age_1",                "isMultiKey" : false,                "multiKeyPaths" : {                    "created" : [ ],                    "name" : [ ],                    "age" : [ ]                },                "isUnique" : false,                "isSparse" : false,                "isPartial" : false,                "indexVersion" : 2,                "direction" : "backward",                "indexBounds" : {                    "created" : [                        "[MinKey, MaxKey]"                    ],                    "name" : [                        "[MaxKey, MinKey]"                    ],                    "age" : [                        "[MaxKey, MinKey]"                    ]                },                "keysExamined" : 1000000            }        }    }}

排序使用索引前缀,也需要保证字段的顺序,但是可以反方向排序;

db.users.find().sort({created:1, name:-1, age:-1}).explain('executionStats'){    "queryPlanner" : {        "plannerVersion" : 1,        "namespace" : "test.users",        "indexFilterSet" : false,        "parsedQuery" : {                    },        "winningPlan" : {            "stage" : "FETCH",            "inputStage" : {                "stage" : "IXSCAN",                "keyPattern" : {                    "created" : -1,                    "name" : 1,                    "age" : 1                },                "indexName" : "created_-1_name_1_age_1",                "isMultiKey" : false,                "multiKeyPaths" : {                    "created" : [ ],                    "name" : [ ],                    "age" : [ ]                },                "isUnique" : false,                "isSparse" : false,                "isPartial" : false,                "indexVersion" : 2,                "direction" : "backward",                "indexBounds" : {                    "created" : [                        "[MinKey, MaxKey]"                    ],                    "name" : [                        "[MaxKey, MinKey]"                    ],                    "age" : [                        "[MaxKey, MinKey]"                    ]                }            }        },        "rejectedPlans" : [ ]    },    "executionStats" : {        "executionSuccess" : true,        "nReturned" : 1000000,        "executionTimeMillis" : 1487,        "totalKeysExamined" : 1000000,        "totalDocsExamined" : 1000000,        "executionStages" : {            "stage" : "FETCH",            "nReturned" : 1000000,            "executionTimeMillisEstimate" : 1339,            "works" : 1000001,            "advanced" : 1000000,            "needTime" : 0,            "needYield" : 0,            "saveState" : 7845,            "restoreState" : 7845,            "isEOF" : 1,            "invalidates" : 0,            "docsExamined" : 1000000,            "alreadyHasObj" : 0,            "inputStage" : {                "stage" : "IXSCAN",                "nReturned" : 1000000,                "executionTimeMillisEstimate" : 769,                "works" : 1000001,                "advanced" : 1000000,                "needTime" : 0,                "needYield" : 0,                "saveState" : 7845,                "restoreState" : 7845,                "isEOF" : 1,                "invalidates" : 0,                "keyPattern" : {                    "created" : -1,                    "name" : 1,                    "age" : 1                },                "indexName" : "created_-1_name_1_age_1",                "isMultiKey" : false,                "multiKeyPaths" : {                    "created" : [ ],                    "name" : [ ],                    "age" : [ ]                },                "isUnique" : false,                "isSparse" : false,                "isPartial" : false,                "indexVersion" : 2,                "direction" : "backward",                "indexBounds" : {                    "created" : [                        "[MinKey, MaxKey]"                    ],                    "name" : [                        "[MaxKey, MinKey]"                    ],                    "age" : [                        "[MaxKey, MinKey]"                    ]                },                "keysExamined" : 1000000,                "seeks" : 1,                "dupsTested" : 0,                "dupsDropped" : 0,                "seenInvalidated" : 0            }        }    }}

排序如果使用的是非前缀的局部字典排序,name需要保证前边的字段是等值筛选操作才行;

db.users.find({created:new Date("2021-10-30T08:17:01.184Z")}).sort({name:-1}).explain('executionStats'){    "queryPlanner" : {        "plannerVersion" : 1,        "namespace" : "test.users",        "indexFilterSet" : false,        "parsedQuery" : {            "created" : {                "$eq" : ISODate("2021-10-30T08:17:01.184Z")            }        },        "winningPlan" : {            "stage" : "FETCH",            "inputStage" : {                "stage" : "IXSCAN",                "keyPattern" : {                    "created" : -1,                    "name" : 1,                    "age" : 1                },                "indexName" : "created_-1_name_1_age_1",                "isMultiKey" : false,                "multiKeyPaths" : {                    "created" : [ ],                    "name" : [ ],                    "age" : [ ]                },                "isUnique" : false,                "isSparse" : false,                "isPartial" : false,                "indexVersion" : 2,                "direction" : "backward",                "indexBounds" : {                    "created" : [                        "[new Date(1635581821184), new Date(1635581821184)]"                    ],                    "name" : [                        "[MaxKey, MinKey]"                    ],                    "age" : [                        "[MaxKey, MinKey]"                    ]                }            }        },        "rejectedPlans" : [ ]    },    "executionStats" : {        "executionSuccess" : true,        "nReturned" : 0,        "executionTimeMillis" : 0,        "totalKeysExamined" : 0,        "totalDocsExamined" : 0,        "executionStages" : {            "stage" : "FETCH",            "nReturned" : 0,            "executionTimeMillisEstimate" : 0,            "works" : 1,            "advanced" : 0,            "needTime" : 0,            "needYield" : 0,            "saveState" : 0,            "restoreState" : 0,            "isEOF" : 1,            "invalidates" : 0,            "docsExamined" : 0,            "alreadyHasObj" : 0,            "inputStage" : {                "stage" : "IXSCAN",                "nReturned" : 0,                "executionTimeMillisEstimate" : 0,                "works" : 1,                "advanced" : 0,                "needTime" : 0,                "needYield" : 0,                "saveState" : 0,                "restoreState" : 0,                "isEOF" : 1,                "invalidates" : 0,                "keyPattern" : {                    "created" : -1,                    "name" : 1,                    "age" : 1                },                "indexName" : "created_-1_name_1_age_1",                "isMultiKey" : false,                "multiKeyPaths" : {                    "created" : [ ],                    "name" : [ ],                    "age" : [ ]                },                "isUnique" : false,                "isSparse" : false,                "isPartial" : false,                "indexVersion" : 2,                "direction" : "backward",                "indexBounds" : {                    "created" : [                        "[new Date(1635581821184), new Date(1635581821184)]"                    ],                    "name" : [                        "[MaxKey, MinKey]"                    ],                    "age" : [                        "[MaxKey, MinKey]"                    ]                },                "keysExamined" : 0,                "seeks" : 1,                "dupsTested" : 0,                "dupsDropped" : 0,                "seenInvalidated" : 0            }        }    }}

六、搜索数据对索引命中的影响

MongoDB对index的选择是受到实际场景的数据影响比较大的,即与实际数据的分布规律有关,也跟实际筛选出来的数据有关系;所以我们对索引的优化和测试都需要考虑实际的数据场景才行;

由于name的字段值筛选出来的key太多,不能充分利用index,所以MongoDB拒绝了name_1并选择了age_1;

db.users.find({        name:/^user/,        age:{$gte:110}    }).explain('executionStats')    {    "queryPlanner" : {        "plannerVersion" : 1,        "namespace" : "test.users",        "indexFilterSet" : false,        "parsedQuery" : {            "$and" : [                {                    "age" : {                        "$gte" : 110                    }                },                {                    "name" : {                        "$regex" : "^user"                    }                }            ]        },        "winningPlan" : {            "stage" : "FETCH",            "filter" : {                "name" : {                    "$regex" : "^user"                }            },            "inputStage" : {                "stage" : "IXSCAN",                "keyPattern" : {                    "age" : 1                },                "indexName" : "age_1",                "isMultiKey" : false,                "multiKeyPaths" : {                    "age" : [ ]                },                "isUnique" : false,                "isSparse" : false,                "isPartial" : false,                "indexVersion" : 2,                "direction" : "forward",                "indexBounds" : {                    "age" : [                        "[110.0, inf.0]"                    ]                }            }        },        "rejectedPlans" : [            {                "stage" : "FETCH",                "filter" : {                    "age" : {                        "$gte" : 110                    }                },                "inputStage" : {                    "stage" : "IXSCAN",                    "keyPattern" : {                        "name" : 1                    },                    "indexName" : "name_1",                    "isMultiKey" : false,                    "multiKeyPaths" : {                        "name" : [ ]                    },                    "isUnique" : false,                    "isSparse" : false,                    "isPartial" : false,                    "indexVersion" : 2,                    "direction" : "forward",                    "indexBounds" : {                        "name" : [                            "[\"user\", \"uses\")",                            "[/^user/, /^user/]"                        ]                    }                }            }        ]    },    "executionStats" : {        "executionSuccess" : true,        "nReturned" : 83215,        "executionTimeMillis" : 246,        "totalKeysExamined" : 83215,        "totalDocsExamined" : 83215,        "executionStages" : {            "stage" : "FETCH",            "filter" : {                "name" : {                    "$regex" : "^user"                }            },            "nReturned" : 83215,            "executionTimeMillisEstimate" : 232,            "works" : 83216,            "advanced" : 83215,            "needTime" : 0,            "needYield" : 0,            "saveState" : 658,            "restoreState" : 658,            "isEOF" : 1,            "invalidates" : 0,            "docsExamined" : 83215,            "alreadyHasObj" : 0,            "inputStage" : {                "stage" : "IXSCAN",                "nReturned" : 83215,                "executionTimeMillisEstimate" : 43,                "works" : 83216,                "advanced" : 83215,                "needTime" : 0,                "needYield" : 0,                "saveState" : 658,                "restoreState" : 658,                "isEOF" : 1,                "invalidates" : 0,                "keyPattern" : {                    "age" : 1                },                "indexName" : "age_1",                "isMultiKey" : false,                "multiKeyPaths" : {                    "age" : [ ]                },                "isUnique" : false,                "isSparse" : false,                "isPartial" : false,                "indexVersion" : 2,                "direction" : "forward",                "indexBounds" : {                    "age" : [                        "[110.0, inf.0]"                    ]                },                "keysExamined" : 83215,                "seeks" : 1,                "dupsTested" : 0,                "dupsDropped" : 0,                "seenInvalidated" : 0            }        }    }}

我们修改一下name筛选条件的值,进一步缩小命中的范围,可以看到这次MongoDB选择了name_1;

db.users.find({        name:/^user8888/,        age:{$gte:110}    }).explain('executionStats')    {    "queryPlanner" : {        "plannerVersion" : 1,        "namespace" : "test.users",        "indexFilterSet" : false,        "parsedQuery" : {            "$and" : [                {                    "age" : {                        "$gte" : 110                    }                },                {                    "name" : {                        "$regex" : "^user8888"                    }                }            ]        },        "winningPlan" : {            "stage" : "FETCH",            "filter" : {                "age" : {                    "$gte" : 110                }            },            "inputStage" : {                "stage" : "IXSCAN",                "keyPattern" : {                    "name" : 1                },                "indexName" : "name_1",                "isMultiKey" : false,                "multiKeyPaths" : {                    "name" : [ ]                },                "isUnique" : false,                "isSparse" : false,                "isPartial" : false,                "indexVersion" : 2,                "direction" : "forward",                "indexBounds" : {                    "name" : [                        "[\"user8888\", \"user8889\")",                        "[/^user8888/, /^user8888/]"                    ]                }            }        },        "rejectedPlans" : [            {                "stage" : "FETCH",                "filter" : {                    "name" : {                        "$regex" : "^user8888"                    }                },                "inputStage" : {                    "stage" : "IXSCAN",                    "keyPattern" : {                        "age" : 1                    },                    "indexName" : "age_1",                    "isMultiKey" : false,                    "multiKeyPaths" : {                        "age" : [ ]                    },                    "isUnique" : false,                    "isSparse" : false,                    "isPartial" : false,                    "indexVersion" : 2,                    "direction" : "forward",                    "indexBounds" : {                        "age" : [                            "[110.0, inf.0]"                        ]                    }                }            }        ]    },    "executionStats" : {        "executionSuccess" : true,        "nReturned" : 10,        "executionTimeMillis" : 0,        "totalKeysExamined" : 112,        "totalDocsExamined" : 111,        "executionStages" : {            "stage" : "FETCH",            "filter" : {                "age" : {                    "$gte" : 110                }            },            "nReturned" : 10,            "executionTimeMillisEstimate" : 0,            "works" : 114,            "advanced" : 10,            "needTime" : 102,            "needYield" : 0,            "saveState" : 1,            "restoreState" : 1,            "isEOF" : 1,            "invalidates" : 0,            "docsExamined" : 111,            "alreadyHasObj" : 0,            "inputStage" : {                "stage" : "IXSCAN",                "nReturned" : 111,                "executionTimeMillisEstimate" : 0,                "works" : 113,                "advanced" : 111,                "needTime" : 1,                "needYield" : 0,                "saveState" : 1,                "restoreState" : 1,                "isEOF" : 1,                "invalidates" : 0,                "keyPattern" : {                    "name" : 1                },                "indexName" : "name_1",                "isMultiKey" : false,                "multiKeyPaths" : {                    "name" : [ ]                },                "isUnique" : false,                "isSparse" : false,                "isPartial" : false,                "indexVersion" : 2,                "direction" : "forward",                "indexBounds" : {                    "name" : [                        "[\"user8888\", \"user8889\")",                        "[/^user8888/, /^user8888/]"                    ]                },                "keysExamined" : 112,                "seeks" : 2,                "dupsTested" : 0,                "dupsDropped" : 0,                "seenInvalidated" : 0            }        }    }}

以上就是关于"MongoDB中什么情况下索引会选择策略"这篇文章的内容,相信大家都有了一定的了解,希望小编分享的内容对大家有帮助,若想了解更多相关的知识内容,请关注行业资讯频道。

0