numpy random模块有哪些
发表于:2025-02-01 作者:千家信息网编辑
千家信息网最后更新 2025年02月01日,这篇文章主要为大家展示了" numpy random模块有哪些",内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下" numpy random模块有哪些"这篇文章
千家信息网最后更新 2025年02月01日numpy random模块有哪些
这篇文章主要为大家展示了" numpy random模块有哪些",内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下" numpy random模块有哪些"这篇文章吧。
一下方法都要加np.random.前缀
1.简单随机数据
name | describe |
---|---|
rand(d0, d1, …, dn) | Random values in a given shape. |
randn(d0, d1, …, dn) | Return a sample (or samples) from the "standard normal" distribution. |
randint(low[, high, size, dtype]) | Return random integers from low (inclusive) to high (exclusive). |
random_integers(low[, high, size]) | Random integers of type np.int between low and high, inclusive. |
random_sample([size]) | Return random floats in the half-open interval [0.0, 1.0). |
random([size]) | Return random floats in the half-open interval [0.0, 1.0). |
ranf([size]) | Return random floats in the half-open interval [0.0, 1.0). |
sample([size]) | Return random floats in the half-open interval [0.0, 1.0). |
choice(a[, size, replace, p]) | Generates a random sample from a given 1-D array |
bytes(length) | Return random bytes. |
2.生成随机分布
name | describe |
---|---|
beta(a, b[, size]) | Draw samples from a Beta distribution. |
binomial(n, p[, size]) | Draw samples from a binomial distribution. |
chisquare(df[, size]) | Draw samples from a chi-square distribution. |
dirichlet(alpha[, size]) | Draw samples from the Dirichlet distribution. |
exponential([scale, size]) | Draw samples from an exponential distribution. |
f(dfnum, dfden[, size]) | Draw samples from an F distribution. |
gamma(shape[, scale, size]) | Draw samples from a Gamma distribution. |
geometric(p[, size]) | Draw samples from the geometric distribution. |
gumbel([loc, scale, size]) | Draw samples from a Gumbel distribution. |
hypergeometric(ngood, nbad, nsample[, size]) | Draw samples from a Hypergeometric distribution. |
laplace([loc, scale, size]) | Draw samples from the Laplace or double exponential distribution with specified logistic([loc, scale, size]) Draw samples from a logistic distribution. |
lognormal([mean, sigma, size]) | Draw samples from a log-normal distribution. |
logseries(p[, size]) | Draw samples from a logarithmic series distribution. |
multinomial(n, pvals[, size]) | Draw samples from a multinomial distribution. |
multivariate_normal(mean, cov[, size]) | Draw random samples from a multivariate normal distribution. |
negative_binomial(n, p[, size]) | Draw samples from a negative binomial distribution. |
noncentral_chisquare(df, nonc[, size]) | Draw samples from a noncentral chi-square distribution. |
noncentral_f(dfnum, dfden, nonc[, size]) | Draw samples from the noncentral F distribution. |
normal([loc, scale, size]) | Draw random samples from a normal (Gaussian) distribution. |
pareto(a[, size]) | Draw samples from a Pareto II or Lomax distribution with specified shape. |
poisson([lam, size]) | Draw samples from a Poisson distribution. |
power(a[, size]) | Draws samples in [0, 1] from a power distribution with positive exponent a - 1. |
rayleigh([scale, size]) | Draw samples from a Rayleigh distribution. |
standard_cauchy([size]) | Draw samples from a standard Cauchy distribution with mode = 0. |
standard_exponential([size]) | Draw samples from the standard exponential distribution. |
standard_gamma(shape[, size]) | Draw samples from a standard Gamma distribution. |
standard_normal([size]) | Draw samples from a standard Normal distribution (mean=0, stdev=1). |
standard_t(df[, size]) | Draw samples from a standard Student's t distribution with df degrees of freedom. |
triangular(left, mode, right[, size]) | Draw samples from the triangular distribution over the interval [left, right]. |
uniform([low, high, size]) | Draw samples from a uniform distribution. |
vonmises(mu, kappa[, size]) | Draw samples from a von Mises distribution. |
wald(mean, scale[, size]) | Draw samples from a Wald, or inverse Gaussian, distribution. |
weibull(a[, size]) | Draw samples from a Weibull distribution. |
zipf(a[, size]) | Draw samples from a Zipf distribution. |
3.重排
name | describe |
---|---|
shuffle(x) | Modify a sequence in-place by shuffling its contents. |
permutation(x) | Randomly permute a sequence, or return a permuted range. |
以上是" numpy random模块有哪些"这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注行业资讯频道!
模块
内容
篇文章
学习
帮助
前缀
数据
方法
易懂
更多
条理
知识
编带
行业
资讯
资讯频道
频道
生成
研究
数据库的安全要保护哪些东西
数据库安全各自的含义是什么
生产安全数据库录入
数据库的安全性及管理
数据库安全策略包含哪些
海淀数据库安全审计系统
建立农村房屋安全信息数据库
易用的数据库客户端支持安全管理
连接数据库失败ssl安全错误
数据库的锁怎样保障安全
自贡国家网络安全宣传
重庆电子工程职业学院数据库b卷
调用数据库代码
如何查询数据库中已有的表
鸡西软件开发公司地址
苹果cms播放器数据库
网络安全法 行政职能
可插sim卡串口服务器
计算机网络技术大赛题型
数据库代码语句
服务器节点包括管理节点
安徽服务器阵列卡安装云空间
重庆融石网络技术公司
德施曼软件开发
软件开发文档通用要求GB
搜索服务器ip y87886
雷军的小米为啥叫互联网科技公司
数据库中编号是什么数据类型
崂山区管理软件开发系统
常州app软件开发费用明细
ctf网络安全技能大赛
北京米洛网络技术
合肥软件开发月薪多少
网赌的app软件开发者
怎么使用新建用户登录数据库
台式机网络安全模式
oracle数据库 并发
数据库id怎么转字符型
谨德觉行互联网科技有限公司
中国在线互联网科技有限公司