python matplotlib是如何画图的
发表于:2025-01-19 作者:千家信息网编辑
千家信息网最后更新 2025年01月19日,python matplotlib是如何画图的,很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。1.引入matpltlib库
千家信息网最后更新 2025年01月19日python matplotlib是如何画图的1.引入matpltlib库
2.pyplot基础图标函数总结
3.plot函数画图语法规则
4.折线图
4.散点图
5.直方图
6.条形图
纵向
多条
7.饼图
python matplotlib是如何画图的,很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。
1.引入matpltlib库
matplotlib
是一种优秀的python
数据可视化第三方库
使用matpltlib
库画图时,先将它引入,加载里面的pyplot,并命名为plt,然后使用plot
函数画图
import matplotlib.pyplot as plt #plt是引入模块的别名
2.pyplot基础图标函数总结
3.plot函数画图语法规则
plot函数参数:plot([x],y,[format],**kwargs)
各类语法太多啦,偷几张MOOC的图放上来~
4.折线图
from matplotlib import pyplot as plt
#生成数据#横坐标数据从2017到2022,第三个参数可控制步长,可写可不写x = range(2017, 2022)#y对应纵坐标的值y1 = [49, 48, 45, 52, 50]y2 = [60, 62, 61, 65, 63]#生成图形plt.title("LMY and her mother's weight")plt.xlabel('year')plt.ylabel('kg')plt.plot(x, y1, color='green', label='LMY')plt.plot(x, y2, color='purple', label='mother')plt.grid(alpha=0.5)plt.legend(loc='upper right')#显示图形plt.show()
4.散点图
from matplotlib import pyplot as pltimport numpy as np# 生成数据# 横坐标数据从2017到2022,第三个参数可控制步长,可写可不写x = range(2017, 2022)# y对应纵坐标的值y1 = [49, 48, 45, 52, 50]y2 = [60, 62, 61, 65, 63]# 生成图形plt.title("LMY and her mother's weight")plt.xlabel('year')plt.ylabel('kg')# 点的大小area = np.pi*4**2plt.scatter(x, y1, s=area, c='yellow', alpha=1)plt.scatter(x, y2, s=area, c='blue', alpha=1)plt.legend()plt.yticks(())plt.show()
5.直方图
from matplotlib import pyplot as pltimport numpy as np# 生成数据# 横坐标数据从2017到2022,第三个参数可控制步长,可写可不写x = [2017, 2018, 2019, 2020, 2021]# y对应纵坐标的值y1 = [49, 48, 45, 52, 50]y2 = [60, 62, 61, 65, 63]# 生成图形plt.title("LMY and her mother's weight")plt.ylabel('frequency')plt.xlabel('kg')# 点的大小plt.hist(y1, bottom=None, color='purple')plt.hist(y2, bottom=None, color='pink')plt.show()# n, bins, patches = plt.hist(arr, bins=50, normed=1, facecolor='green', alpha=0.75)'''arr:需要计算直方图的一维数组bins:直方图的柱数,可选项,默认为10normed:是否将得到的直方图向量归一化,默认为0facecolor:直方图颜色alpha:透明度'''
6.条形图
纵向
from matplotlib import pyplot as pltimport numpy as nparr = np.arange(2017, 2022)x = [49, 48, 45, 52, 50] # x轴y = [2017, 2018, 2019, 2020, 2021]rect = plt.bar(arr, x, width=0.5)plt.title('LMY')plt.xlabel('weight')plt.ylabel('year')plt.legend()plt.show()
横向
多条
from matplotlib import pyplot as pltimport numpy as nparr = np.arange(2017, 2022)x1 = [49, 48, 45, 52, 50] # x轴x2 = [60, 62, 61, 65, 63]y = [2017, 2018, 2019, 2020, 2021]rects1 = plt.bar(arr, x1, 0.5, color='purple', label='LMY')rects2 = plt.bar(arr, x2, 0.5, color='yellow', label='Mother', alpha=0.3)plt.title("LMY and her mother's weight")plt.xlabel('weight')plt.ylabel('year')plt.legend()plt.show()
7.饼图
from matplotlib import patches, pyplot as pltimport numpy as nplabel_list = ['49', '48', '45', '52', '50']size = [20, 20, 20, 20, 20]# 各部分的颜色color = ['red', 'pink', 'blue', 'green', 'purple']explode = [0, 0, 0.15, 0, 0]patches, l_text, p_text = plt.pie(size, explode=explode, colors=color, labels=label_list, labeldistance=1.2, autopct="%1.2f%%", shadow=False, startangle=90, pctdistance=0.6)plt.axis('equal')plt.title("LMY's weight")plt.legend(loc='upper left')plt.show()
看完上述内容是否对您有帮助呢?如果还想对相关知识有进一步的了解或阅读更多相关文章,请关注行业资讯频道,感谢您对的支持。
数据
生成
直方图
函数
参数
图形
可不
三个
横坐标
纵坐标
步长
控制
大小
语法
颜色
帮助
优秀
清楚
内容
别名
数据库的安全要保护哪些东西
数据库安全各自的含义是什么
生产安全数据库录入
数据库的安全性及管理
数据库安全策略包含哪些
海淀数据库安全审计系统
建立农村房屋安全信息数据库
易用的数据库客户端支持安全管理
连接数据库失败ssl安全错误
数据库的锁怎样保障安全
软件开发业务文档
2022饿了么服务器出错
qq代理服务器 免费
软件直播软件开发
关于数据库锁 以下
微信服务器保存图片多久
疫情下的网络安全生活
南瑞信通 网络安全
v7系统怎样设置网络服务器
建网站要买服务器吗
oracle数据库树
项目网络技术人员岗位职责
数据库怎么关联变量记录
手机ssr服务器名无效
人月神话是软件开发
iis服务器绑定域名
关系数据库数
方舟哪个服务器有精灵球
网络安全证书的密码是多少
服务器全部卡死
快速管理服务器
网络安全法在线考试答案
数据库有几种数据格式
国际服怎么登录mc服务器
上海先进软件开发厂家现货
软件开发单元测试报告怎么写
运维查询服务器型号
下列关于数据库加锁速度
金蝶数据库怎么设置
服务器管理应该做那些事情