千家信息网

python matplotlib是如何画图的

发表于:2025-01-19 作者:千家信息网编辑
千家信息网最后更新 2025年01月19日,python matplotlib是如何画图的,很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。1.引入matpltlib库
千家信息网最后更新 2025年01月19日python matplotlib是如何画图的

python matplotlib是如何画图的,很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。

    1.引入matpltlib库

    matplotlib是一种优秀的python数据可视化第三方库
    使用matpltlib库画图时,先将它引入,加载里面的pyplot,并命名为plt,然后使用plot函数画图

    import matplotlib.pyplot as plt #plt是引入模块的别名

    2.pyplot基础图标函数总结

    3.plot函数画图语法规则

    plot函数参数:plot([x],y,[format],**kwargs)

    各类语法太多啦,偷几张MOOC的图放上来~

    4.折线图

    from matplotlib import pyplot as plt

    #生成数据#横坐标数据从2017到2022,第三个参数可控制步长,可写可不写x = range(2017, 2022)#y对应纵坐标的值y1 = [49, 48, 45, 52, 50]y2 = [60, 62, 61, 65, 63]#生成图形plt.title("LMY and her mother's weight")plt.xlabel('year')plt.ylabel('kg')plt.plot(x, y1, color='green', label='LMY')plt.plot(x, y2, color='purple', label='mother')plt.grid(alpha=0.5)plt.legend(loc='upper right')#显示图形plt.show()

    4.散点图

    from matplotlib import pyplot as pltimport numpy as np# 生成数据# 横坐标数据从2017到2022,第三个参数可控制步长,可写可不写x = range(2017, 2022)# y对应纵坐标的值y1 = [49, 48, 45, 52, 50]y2 = [60, 62, 61, 65, 63]# 生成图形plt.title("LMY and her mother's weight")plt.xlabel('year')plt.ylabel('kg')# 点的大小area = np.pi*4**2plt.scatter(x, y1, s=area, c='yellow', alpha=1)plt.scatter(x, y2, s=area, c='blue', alpha=1)plt.legend()plt.yticks(())plt.show()

    5.直方图

    from matplotlib import pyplot as pltimport numpy as np# 生成数据# 横坐标数据从2017到2022,第三个参数可控制步长,可写可不写x = [2017, 2018, 2019, 2020, 2021]# y对应纵坐标的值y1 = [49, 48, 45, 52, 50]y2 = [60, 62, 61, 65, 63]# 生成图形plt.title("LMY and her mother's weight")plt.ylabel('frequency')plt.xlabel('kg')# 点的大小plt.hist(y1, bottom=None, color='purple')plt.hist(y2, bottom=None, color='pink')plt.show()# n, bins, patches = plt.hist(arr, bins=50, normed=1, facecolor='green', alpha=0.75)'''arr:需要计算直方图的一维数组bins:直方图的柱数,可选项,默认为10normed:是否将得到的直方图向量归一化,默认为0facecolor:直方图颜色alpha:透明度'''

    6.条形图

    纵向

    from matplotlib import pyplot as pltimport numpy as nparr = np.arange(2017, 2022)x = [49, 48, 45, 52, 50]  # x轴y = [2017, 2018, 2019, 2020, 2021]rect = plt.bar(arr, x, width=0.5)plt.title('LMY')plt.xlabel('weight')plt.ylabel('year')plt.legend()plt.show()

    横向

    多条

    from matplotlib import pyplot as pltimport numpy as nparr = np.arange(2017, 2022)x1 = [49, 48, 45, 52, 50]  # x轴x2 = [60, 62, 61, 65, 63]y = [2017, 2018, 2019, 2020, 2021]rects1 = plt.bar(arr, x1, 0.5, color='purple', label='LMY')rects2 = plt.bar(arr, x2, 0.5, color='yellow', label='Mother', alpha=0.3)plt.title("LMY and her mother's weight")plt.xlabel('weight')plt.ylabel('year')plt.legend()plt.show()

    7.饼图

    from matplotlib import patches, pyplot as pltimport numpy as nplabel_list = ['49', '48', '45', '52', '50']size = [20, 20, 20, 20, 20]# 各部分的颜色color = ['red', 'pink', 'blue', 'green', 'purple']explode = [0, 0, 0.15, 0, 0]patches, l_text, p_text = plt.pie(size, explode=explode, colors=color, labels=label_list,                                  labeldistance=1.2, autopct="%1.2f%%", shadow=False, startangle=90, pctdistance=0.6)plt.axis('equal')plt.title("LMY's weight")plt.legend(loc='upper left')plt.show()

    看完上述内容是否对您有帮助呢?如果还想对相关知识有进一步的了解或阅读更多相关文章,请关注行业资讯频道,感谢您对的支持。

    0