千家信息网

Hadoop2.6.0学习笔记(六)TextOutputFormat及RecordWriter解析

发表于:2025-01-25 作者:千家信息网编辑
千家信息网最后更新 2025年01月25日,鲁春利的工作笔记,谁说程序员不能有文艺范?MapReduce提供了许多默认的输出格式,如TextOutputFormat、KeyValueOutputFormat等。MapReduce中输出文件的个数
千家信息网最后更新 2025年01月25日Hadoop2.6.0学习笔记(六)TextOutputFormat及RecordWriter解析

鲁春利的工作笔记,谁说程序员不能有文艺范?



MapReduce提供了许多默认的输出格式,如TextOutputFormat、KeyValueOutputFormat等。MapReduce中输出文件的个数与Reduce的个数一致,默认情况下有一个Reduce,输出只有一个文件,文件名为part-r-00000,文件内容的行数与map输出中不同key的个数一致。如果有两个Reduce,输出的结果就有两个文件,第一个为part-r-00000,第二个为part-r-00001,依次类推。


MapReduce中默认实现输出功能的类是TextOutputFormat,它主要用来将文本数据输出到HDFS上。

public class TextOutputFormat extends FileOutputFormat {  public static String SEPERATOR = "mapreduce.output.textoutputformat.separator";  // 定义了内部类用来实现输出,换行符为\n,分隔符为\t(可以通过参数修改)  protected static class LineRecordWriter extends RecordWriter {    public LineRecordWriter(DataOutputStream out) {    // 实际为FSDataOutputStream      this(out, "\t");    }    /** 主要的结构就是两个方法:write和close **/    public synchronized void write(K key, V value)throws IOException {      boolean nullKey = key == null || key instanceof NullWritable;      boolean nullValue = value == null || value instanceof NullWritable;      if (nullKey && nullValue) {        return;      }      if (!nullKey) {        writeObject(key);    // 将Text类型数据处理成字节数组      }      if (!(nullKey || nullValue)) {        out.write(keyValueSeparator);      }      if (!nullValue) {        writeObject(value);      }      out.write(newline);    // 换行(newline = "\n".getBytes(utf8);)    }    public synchronized void close(TaskAttemptContext context) throws IOException {      out.close();    }  }    // 内部类定义结束,下面为TextOutputFormat唯一的关键方法  public RecordWriter  getRecordWriter(TaskAttemptContext job)                        throws IOException, InterruptedException {    // 1、根据Configuration判定是否需要压缩,若需要压缩获取压缩格式及后缀;    // 2. 获取需要生成的文件路径,getDefaultWorkFile(job, extension)    // 3. 根据文件生成FSDataOutputStream对象,并return new LineRecordWriter。    Configuration conf = job.getConfiguration();    boolean isCompressed = getCompressOutput(job);    String keyValueSeparator= conf.get(SEPERATOR, "\t");    CompressionCodec codec = null;    String extension = "";    if (isCompressed) {    // 如果是压缩,则根据压缩获取扩展名      Class codecClass = getOutputCompressorClass(job, GzipCodec.class);      codec = (CompressionCodec) ReflectionUtils.newInstance(codecClass, conf);      extension = codec.getDefaultExtension();    }    // getDefaultWorkFile用来获取保存输出数据的文件名,由FileOutputFormat类实现    Path file = getDefaultWorkFile(job, extension);    FileSystem fs = file.getFileSystem(conf);        // 获取writer对象    if (!isCompressed) {      FSDataOutputStream fileOut = fs.create(file, false);      return new LineRecordWriter(fileOut, keyValueSeparator);    } else {      FSDataOutputStream fileOut = fs.create(file, false);      DataOutputStream dataOut = new DataOutputStream(codec.createOutputStream(fileOut));      return new LineRecordWriter(dataOut, keyValueSeparator);    }  }}

通过TextFileOutput类分析出具体需要将数据保存到HDFS的什么位置上,是通过FileOutputFormat类的getDefaultWorkFile方法来获取的。实际上对于MapReduce中所有的输出都需要继承OutputFormat,先看一下OutputFormat的类定义。

/** * OutputFormat定义了Map-Reduce作业的输出规范,如: * 1、校验,如指定的输出目录是否存在,输出的空间是否足够大; * 2、指定RecordWriter来将MapReduce的输出写入到FileSystem(一般为HDFS); */public abstract class OutputFormat {  // 获取与当前task相关联的RecordWriter对象  public abstract RecordWriter getRecordWriter(TaskAttemptContext context)                               throws IOException, InterruptedException;                                // 当提交job时检查当前job的输出规范是否有效,如输出目录是否已存在等  public abstract void checkOutputSpecs(JobContext context)                               throws IOException, InterruptedException;                                // Get the output committer for this output format.   // This is responsible for ensuring the output is committed correctly.  public abstract OutputCommitter getOutputCommitter(TaskAttemptContext context)                               throws IOException, InterruptedException;}

在TextOutputFormat中实现了getRecordWriter,而TextOutputFormat的是FileOutputFormat的子类,而FileOutputFormat是的子类。

/** 用来实现写数据到HDFS的OutputFormat的基类 **/public abstract class FileOutputFormat extends OutputFormat {  /** 当有多个分区时,会有多个输出文件,通过NUMBER_FORMAT定义输出文件编号,如part-r-00000,00001等。 **/  private static final NumberFormat NUMBER_FORMAT = NumberFormat.getInstance();  /** 默认的输出文件为part开头的,可以通过该参数给指定一个输出的文件名 **/  protected static final String BASE_OUTPUT_NAME = "mapreduce.output.basename";  protected static final String PART = "part";  static {    NUMBER_FORMAT.setMinimumIntegerDigits(5);    NUMBER_FORMAT.setGroupingUsed(false);  }    // 对MapReduce的输出可以指定是否压缩及压缩形式,通过配置文件mapred-site.xml进行配置  // 默认为false  public static final String COMPRESS ="mapreduce.output.fileoutputformat.compress";  // 默认为org.apache.hadoop.io.compress.DefaultCodec  public static final String COMPRESS_CODEC = "mapreduce.output.fileoutputformat.compress.codec";  // 默认为RECORD,针对每行记录进行压缩。如果设置为BLOCK,针对一组记录进行压缩。  public static final String COMPRESS_TYPE = "mapreduce.output.fileoutputformat.compress.type";    // 设置map-reduce job的输出目录  public static void setOutputPath(Job job, Path outputDir) {    try {      outputDir = outputDir.getFileSystem(job.getConfiguration()).makeQualified(outputDir);    } catch (IOException e) {        // Throw the IOException as a RuntimeException to be compatible with MR1        throw new RuntimeException(e);    }    job.getConfiguration().set(FileOutputFormat.OUTDIR, outputDir.toString());  }    // 进行check检查  public void checkOutputSpecs(JobContext job) throws FileAlreadyExistsException, IOException{   // 1. 判定是否设定了输出目录(FileOutputFormat.setOutputPath);   // 2. 判定输出目录是否存在(需指定空目录)。  }    // 获取输出的committer对象,MRv2引入的,以允许用户自己定制合适的OutputCommitter实现  public synchronized OutputCommitter getOutputCommitter(TaskAttemptContext context) throws IOException {    if (committer == null) {      Path output = getOutputPath(context);      committer = new FileOutputCommitter(output, context);    }    return committer;  }    // 获取当前output format对应的默认输出路径和文件名  public Path getDefaultWorkFile(TaskAttemptContext context, String extension) throws IOException{    FileOutputCommitter committer = (FileOutputCommitter) getOutputCommitter(context);    return new Path(committer.getWorkPath(), getUniqueFile(context, getOutputName(context), extension));  }     /**   * Generate a unique filename, based on the task id, name, and extension   * 获取文件名,如part-r-00000,00001等   * @param context the task that is calling this   * @param name the base filename   * @param extension the filename extension   * @return a string like $name-[mrsct]-$id$extension   */  public synchronized static String getUniqueFile(TaskAttemptContext context, String name, String extension) {    TaskID taskId = context.getTaskAttemptID().getTaskID();    int partition = taskId.getId();    StringBuilder result = new StringBuilder();    result.append(name);    result.append('-');    result.append(TaskID.getRepresentingCharacter(taskId.getTaskType()));    result.append('-');    result.append(NUMBER_FORMAT.format(partition));    result.append(extension);    return result.toString();  }}


任务的类型是通过类org.apache.hadoop.mapreduce.TaskID$CharTaskTypeMaps获取

static String allTaskTypes = "(m|r|s|c|t)";static {  setupTaskTypeToCharMapping();  setupCharToTaskTypeMapping();}private static void setupTaskTypeToCharMapping() {  typeToCharMap.put(TaskType.MAP, 'm');  typeToCharMap.put(TaskType.REDUCE, 'r');  typeToCharMap.put(TaskType.JOB_SETUP, 's');  typeToCharMap.put(TaskType.JOB_CLEANUP, 'c');  typeToCharMap.put(TaskType.TASK_CLEANUP, 't');}private static void setupCharToTaskTypeMapping() {  charToTypeMap.put('m', TaskType.MAP);  charToTypeMap.put('r', TaskType.REDUCE);  charToTypeMap.put('s', TaskType.JOB_SETUP);  charToTypeMap.put('c', TaskType.JOB_CLEANUP);  charToTypeMap.put('t', TaskType.TASK_CLEANUP);}// 获取part-r-00000中间的那个rstatic char getRepresentingCharacter(TaskType type) {  return typeToCharMap.get(type);}


应用示例:把首字母相同的单词放到一个文件里面

输入文件内容:

[hadoop@nnode code]$ [hadoop@nnode code]$ hdfs dfs -ls /dataFound 2 items-rw-r--r--   1 hadoop hadoop         47 2015-06-09 17:59 /data/file1.txt-rw-r--r--   2 hadoop hadoop         36 2015-06-09 17:59 /data/file2.txt[hadoop@nnode code]$ hdfs dfs -text /data/file1.txthello   worldhello   markhuanghello   hadoop[hadoop@nnode code]$ hdfs dfs -text /data/file2.txthadoop  okhadoop  failhadoop  2.3[hadoop@nnode code]$


自定义OutputFormat:

package com.lucl.hadoop.mapreduce.multiple;import java.io.IOException;import java.util.HashMap;import java.util.Iterator;import org.apache.hadoop.conf.Configuration;import org.apache.hadoop.fs.FSDataOutputStream;import org.apache.hadoop.fs.Path;import org.apache.hadoop.io.Writable;import org.apache.hadoop.io.WritableComparable;import org.apache.hadoop.io.compress.CompressionCodec;import org.apache.hadoop.io.compress.GzipCodec;import org.apache.hadoop.mapreduce.OutputCommitter;import org.apache.hadoop.mapreduce.RecordWriter;import org.apache.hadoop.mapreduce.TaskAttemptContext;import org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter;import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;import org.apache.hadoop.util.ReflectionUtils;/** * @author luchunli * @description 自定义OutputFormat,这里继承TextOutputFormat,避免了自己实现OutputCommitter,
* MapReduce中key要求为WritableComparable类型的,value要求为Writable类型的. */public class MultipleOutputFormat, V extends Writable>extends TextOutputFormat { /** * OutputFormat通过获取Writer对象,将数据输出到指定目录特定名称的文件中。 */ private MultipleRecordWriter writer = null; // 在TextOutputFormat实现的时候对于每一个map或task任务都有一个唯一的标识,通过TaskID来控制, // 其在输出时文件名是固定的,每一个输出文件对应一个LineRecordWriter,取其输出流对象(FSDataOutputStream), // 在输出时通过输出流对象实现数据输出。 // // 但是在这里实现的时候,实际上是要求对于一个task任务,将它需要输出的数据写入多个文件,文件是不固定的; // 因此在每次输出的时候判定对应的文件是否已经有Writer对象,若有则通过该对象继续输出,否则创建新的。 @Override public RecordWriter getRecordWriter(TaskAttemptContext context) throws IOException, InterruptedException { if (null == writer) { writer = new MultipleRecordWriter(context, this.getTaskOutputPath(context)); } return writer; } // 获取任务的输出路径,仍然采用从committer中获取,TaskAttemptContext封装了task的上下文,后续分析。 // 在TextOutputFormat中是通过调用父类(FileOutputFormat)的getDefaultWorkFile来实现的, // 而getDefaultWorkFile中获取MapReduce定义的默认的文件名,如需要自定义文件名,需自己实现 private Path getTaskOutputPath(TaskAttemptContext context) throws IOException { Path workPath = null; OutputCommitter committer = super.getOutputCommitter(context); if (committer instanceof FileOutputCommitter) { // Get the directory that the task should write results into. workPath = ((FileOutputCommitter) committer).getWorkPath(); } else { // Get the {@link Path} to the output directory for the map-reduce job. // context.getConfiguration().get(FileOutputFormat.OUTDIR); Path outputPath = super.getOutputPath(context); if (null == outputPath) { throw new IOException("Undefined job output-path."); } workPath = outputPath; } return workPath; } /** * @author luchunli * @description 自定义RecordWriter, MapReduce的TextOutputFormat的LineRecordWriter也是内部类,这里参照其实现方式 */ public class MultipleRecordWriter extends RecordWriter { /** RecordWriter的缓存 **/ private HashMap> recordWriters = null; private TaskAttemptContext context; /** 输出目录 **/ private Path workPath = null; public MultipleRecordWriter () {} public MultipleRecordWriter(TaskAttemptContext context, Path path) { super(); this.context = context; this.workPath = path; this.recordWriters = new HashMap>(); } @Override public void write(K key, V value) throws IOException, InterruptedException { String baseName = generateFileNameForKeyValue (key, value, this.context.getConfiguration()); RecordWriter rw = this.recordWriters.get(baseName); if (null == rw) { rw = this.getBaseRecordWriter(context, baseName); this.recordWriters.put(baseName, rw); } // 这里实际仍然为通过LineRecordWriter来实现的 rw.write(key, value); } // 通过MultipleRecordWriter对LineRecordWriter进行了封装,对于同一个task在输出的时候进行了拆分 // 在MapReduce实现中,默认情况下只有一个reduce(Reduce的数量分区部分分析),根据之前的示例所有的输出都将写入到part-r-00000的文件中, // 这里所做的工作就是屏蔽了到part-r-00000的输出,而是将同一个reduce的数据拆分为多个文件。 private RecordWriter getBaseRecordWriter(TaskAttemptContext context, String baseName) throws IOException { Configuration conf = context.getConfiguration(); boolean isCompressed = getCompressOutput(context); // 在LineRecordWriter的实现中,分隔符是通过变量如下方式指定的: // public static String SEPERATOR = "mapreduce.output.textoutputformat.separator"; // String keyValueSeparator= conf.get(SEPERATOR, "\t"); // 这里给了个逗号作为分割 String keyValueSeparator = ","; RecordWriter rw = null; if (isCompressed) { Class codecClass = getOutputCompressorClass(context, GzipCodec.class); CompressionCodec codec = ReflectionUtils.newInstance(codecClass, conf); Path file = new Path(workPath, baseName + codec.getDefaultExtension()); FSDataOutputStream out = file.getFileSystem(conf).create(file, false); rw = new LineRecordWriter<>(out, keyValueSeparator); } else { Path file = new Path(workPath, baseName); FSDataOutputStream out = file.getFileSystem(conf).create(file, false); rw = new LineRecordWriter<>(out, keyValueSeparator); } return rw; } @Override public void close(TaskAttemptContext context) throws IOException, InterruptedException { Iterator> it = this.recordWriters.values().iterator(); while (it.hasNext()) { RecordWriter rw = it.next(); rw.close(context); } this.recordWriters.clear(); } /** 获取生成的文件的后缀名 **/ private String generateFileNameForKeyValue(K key, V value, Configuration configuration) { char c = key.toString().toLowerCase().charAt(0); if (c >= 'a' && c <= 'z') { return c + ".txt"; } return "other.txt"; } }}


实现Mapper

package com.lucl.hadoop.mapreduce.multiple;import java.io.IOException;import java.util.StringTokenizer;import org.apache.hadoop.io.IntWritable;import org.apache.hadoop.io.LongWritable;import org.apache.hadoop.io.Text;import org.apache.hadoop.mapreduce.Mapper;/** * @author luchunli * @description 自定义Mapper */public class TokenizerMapper extends Mapper {    private static final IntWritable one = new IntWritable(1);    private Text text = new Text();        @Override    protected void map(LongWritable key, Text value, Context context)             throws IOException, InterruptedException {        StringTokenizer token = new StringTokenizer(value.toString());        while (token.hasMoreTokens()) {            String word = token.nextToken();            text.set(word);                        context.write(text, one);        }    }}


实现Reducer

package com.lucl.hadoop.mapreduce.multiple;import java.io.IOException;import org.apache.hadoop.io.IntWritable;import org.apache.hadoop.io.Text;import org.apache.hadoop.mapreduce.Reducer;/** * @author luchunli * @description 自定义Reducer */public class TokenizerReducer extends Reducer {    @Override    protected void reduce(Text key, Iterable value, Context context)            throws IOException, InterruptedException {        int sum = 0;        for (IntWritable intWritable : value) {            sum += intWritable.get();        }        context.write(key, new IntWritable(sum));    }}


实现Driver

package com.lucl.hadoop.mapreduce.multiple;import org.apache.hadoop.conf.Configured;import org.apache.hadoop.fs.Path;import org.apache.hadoop.io.IntWritable;import org.apache.hadoop.io.Text;import org.apache.hadoop.mapreduce.Job;import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;import org.apache.hadoop.util.Tool;import org.apache.hadoop.util.ToolRunner;/** * @author luchunli * @description 驱动类 */public class MultipleWorkCount extends Configured implements Tool {    public static void main(String[] args) {        try {            ToolRunner.run(new MultipleWorkCount(), args);        } catch (Exception e) {            e.printStackTrace();        }    }        @Override    public int run(String[] args) throws Exception {        Job job = Job.getInstance(this.getConf(), this.getClass().getSimpleName());                job.setJarByClass(MultipleWorkCount.class);                FileInputFormat.addInputPath(job, new Path(args[0]));                job.setMapperClass(TokenizerMapper.class);        job.setMapOutputKeyClass(Text.class);        job.setMapOutputValueClass(IntWritable.class);                job.setReducerClass(TokenizerReducer.class);        job.setOutputKeyClass(Text.class);        job.setOutputKeyClass(IntWritable.class);                job.setOutputFormatClass(MultipleOutputFormat.class);                FileOutputFormat.setOutputPath(job, new Path(args[1]));                return job.waitForCompletion(true) ? 0 : 1;    }}


调用执行

[hadoop@nnode code]$ hadoop jar MultipleMR.jar /data /201512050001015/12/05 16:45:54 INFO client.RMProxy: Connecting to ResourceManager at nnode/192.168.137.117:803215/12/05 16:45:55 INFO input.FileInputFormat: Total input paths to process : 215/12/05 16:45:55 INFO mapreduce.JobSubmitter: number of splits:215/12/05 16:45:55 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1449302623953_000415/12/05 16:45:56 INFO impl.YarnClientImpl: Submitted application application_1449302623953_000415/12/05 16:45:56 INFO mapreduce.Job: The url to track the job: http://nnode:8088/proxy/application_1449302623953_0004/15/12/05 16:45:56 INFO mapreduce.Job: Running job: job_1449302623953_000415/12/05 16:46:27 INFO mapreduce.Job: Job job_1449302623953_0004 running in uber mode : false15/12/05 16:46:27 INFO mapreduce.Job:  map 0% reduce 0/12/05 16:46:56 INFO mapreduce.Job:  map 50% reduce 0/12/05 16:46:58 INFO mapreduce.Job:  map 100% reduce 0/12/05 16:47:16 INFO mapreduce.Job:  map 100% reduce 100/12/05 16:47:18 INFO mapreduce.Job: Job job_1449302623953_0004 completed successfully15/12/05 16:47:18 INFO mapreduce.Job: Counters: 49        File System Counters                FILE: Number of bytes read=152                FILE: Number of bytes written=323517                FILE: Number of read operations=0                FILE: Number of large read operations=0                FILE: Number of write operations=0                HDFS: Number of bytes read=271                HDFS: Number of bytes written=55                HDFS: Number of read operations=9                HDFS: Number of large read operations=0                HDFS: Number of write operations=7        Job Counters                 Launched map tasks=2                Launched reduce tasks=1                Data-local map tasks=2                Total time spent by all maps in occupied slots (ms)=58249                Total time spent by all reduces in occupied slots (ms)=17197                Total time spent by all map tasks (ms)=58249                Total time spent by all reduce tasks (ms)=17197                Total vcore-seconds taken by all map tasks=58249                Total vcore-seconds taken by all reduce tasks=17197                Total megabyte-seconds taken by all map tasks=59646976                Total megabyte-seconds taken by all reduce tasks=17609728        Map-Reduce Framework                Map input records=6                Map output records=12                Map output bytes=122                Map output materialized bytes=158                Input split bytes=188                Combine input records=0                Combine output records=0                Reduce input groups=7                Reduce shuffle bytes=158                Reduce input records=12                Reduce output records=7                Spilled Records=24                Shuffled Maps =2                Failed Shuffles=0                Merged Map outputs=2                GC time elapsed (ms)=313                CPU time spent (ms)=4770                Physical memory (bytes) snapshot=511684608                Virtual memory (bytes) snapshot=2545770496                Total committed heap usage (bytes)=257171456        Shuffle Errors                BAD_ID=0                CONNECTION=0                IO_ERROR=0                WRONG_LENGTH=0                WRONG_MAP=0                WRONG_REDUCE=0        File Input Format Counters                 Bytes Read=83        File Output Format Counters                 Bytes Written=55[hadoop@nnode code]$


查看输出结果:

[hadoop@nnode code]$ hdfs dfs -ls /2015120500010Found 7 items-rw-r--r--   2 hadoop hadoop          0 2015-12-05 16:47 /2015120500010/_SUCCESS-rw-r--r--   2 hadoop hadoop          7 2015-12-05 16:47 /2015120500010/f.txt-rw-r--r--   2 hadoop hadoop         17 2015-12-05 16:47 /2015120500010/h.txt-rw-r--r--   2 hadoop hadoop         12 2015-12-05 16:47 /2015120500010/m.txt-rw-r--r--   2 hadoop hadoop          5 2015-12-05 16:47 /2015120500010/o.txt-rw-r--r--   2 hadoop hadoop          6 2015-12-05 16:47 /2015120500010/other.txt-rw-r--r--   2 hadoop hadoop          8 2015-12-05 16:47 /2015120500010/w.txt[hadoop@nnode code]$ hdfs dfs -text /2015120500010/h.txthadoop,4hello,3[hadoop@nnode code]$ hdfs dfs -text /2015120500010/o.txtok,1[hadoop@nnode code]$ hdfs dfs -text /2015120500010/other.txt2.3,1[hadoop@nnode code]$


错误记录:

1、java.lang.RuntimeException: java.lang.InstantiationException

[hadoop@nnode code]$ hadoop jar MultipleMR.jar /data /201512050000115/12/05 16:18:19 INFO client.RMProxy: Connecting to ResourceManager at nnode/192.168.137.117:8032java.lang.RuntimeException: java.lang.InstantiationException        at org.apache.hadoop.util.ReflectionUtils.newInstance(ReflectionUtils.java:131)        at org.apache.hadoop.mapreduce.JobSubmitter.checkSpecs(JobSubmitter.java:559)        at org.apache.hadoop.mapreduce.JobSubmitter.submitJobInternal(JobSubmitter.java:432)        at org.apache.hadoop.mapreduce.Job$10.run(Job.java:1296)        at org.apache.hadoop.mapreduce.Job$10.run(Job.java:1293)        at java.security.AccessController.doPrivileged(Native Method)        at javax.security.auth.Subject.doAs(Subject.java:415)        at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1628)        at org.apache.hadoop.mapreduce.Job.submit(Job.java:1293)        at org.apache.hadoop.mapreduce.Job.waitForCompletion(Job.java:1314)        at com.lucl.hadoop.mapreduce.multiple.MultipleWorkCount.run(MultipleWorkCount.java:49)        at org.apache.hadoop.util.ToolRunner.run(ToolRunner.java:70)        at org.apache.hadoop.util.ToolRunner.run(ToolRunner.java:84)        at com.lucl.hadoop.mapreduce.multiple.MultipleWorkCount.main(MultipleWorkCount.java:22)        at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)        at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)        at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)        at java.lang.reflect.Method.invoke(Method.java:606)        at org.apache.hadoop.util.RunJar.run(RunJar.java:221)        at org.apache.hadoop.util.RunJar.main(RunJar.java:136)Caused by: java.lang.InstantiationException        at sun.reflect.InstantiationExceptionConstructorAccessorImpl.newInstance(InstantiationExceptionConstructorAccessorImpl.java:48)        at java.lang.reflect.Constructor.newInstance(Constructor.java:526)        at org.apache.hadoop.util.ReflectionUtils.newInstance(ReflectionUtils.java:129)        ... 19 more[hadoop@nnode code]$

原因:

由于之前还有一个子类,在Driver中是通过子类定义输出,后来感觉子类没有必要,于是去掉了,但是MultipleOutputFormat类定义仍然为abstract MultipleOutputFormat,没有把abstract给注释掉。


2、Error: java.io.IOException: Unable to initialize any output collector

[hadoop@nnode code]$ hadoop jar MultipleMR.jar /data /201512050000515/12/05 16:26:06 INFO client.RMProxy: Connecting to ResourceManager at nnode/192.168.137.117:803215/12/05 16:26:07 INFO input.FileInputFormat: Total input paths to process : 215/12/05 16:26:07 INFO mapreduce.JobSubmitter: number of splits:215/12/05 16:26:08 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1449302623953_000315/12/05 16:26:08 INFO impl.YarnClientImpl: Submitted application application_1449302623953_000315/12/05 16:26:08 INFO mapreduce.Job: The url to track the job: http://nnode:8088/proxy/application_1449302623953_0003/15/12/05 16:26:08 INFO mapreduce.Job: Running job: job_1449302623953_000315/12/05 16:26:43 INFO mapreduce.Job: Job job_1449302623953_0003 running in uber mode : false15/12/05 16:26:43 INFO mapreduce.Job:  map 0% reduce 0/12/05 16:27:13 INFO mapreduce.Job: Task Id : attempt_1449302623953_0003_m_000000_0, Status : FAILEDError: java.io.IOException: Unable to initialize any output collector        at org.apache.hadoop.mapred.MapTask.createSortingCollector(MapTask.java:412)        at org.apache.hadoop.mapred.MapTask.access$100(MapTask.java:81)        at org.apache.hadoop.mapred.MapTask$NewOutputCollector.(MapTask.java:695)        at org.apache.hadoop.mapred.MapTask.runNewMapper(MapTask.java:767)        at org.apache.hadoop.mapred.MapTask.run(MapTask.java:341)        at org.apache.hadoop.mapred.YarnChild$2.run(YarnChild.java:163)        at java.security.AccessController.doPrivileged(Native Method)        at javax.security.auth.Subject.doAs(Subject.java:415)        at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1628)        at org.apache.hadoop.mapred.YarnChild.main(YarnChild.java:158)15/12/05 16:27:13 INFO mapreduce.Job: Task Id : attempt_1449302623953_0003_m_000001_0, Status : FAILEDError: java.io.IOException: Unable to initialize any output collector        at org.apache.hadoop.mapred.MapTask.createSortingCollector(MapTask.java:412)        at org.apache.hadoop.mapred.MapTask.access$100(MapTask.java:81)        at org.apache.hadoop.mapred.MapTask$NewOutputCollector.(MapTask.java:695)        at org.apache.hadoop.mapred.MapTask.runNewMapper(MapTask.java:767)        at org.apache.hadoop.mapred.MapTask.run(MapTask.java:341)        at org.apache.hadoop.mapred.YarnChild$2.run(YarnChild.java:163)        at java.security.AccessController.doPrivileged(Native Method)        at javax.security.auth.Subject.doAs(Subject.java:415)        at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1628)        at org.apache.hadoop.mapred.YarnChild.main(YarnChild.java:158)^C[hadoop@nnode code]$

原因:

Text引用错了:com.sun.jersey.core.impl.provider.entity.XMLJAXBElementProvider.Text
正确的引用:org.apache.hadoop.io.Text


说明:

attempt_1449302623953_0003_m_000000_0

通过第二个错误信息能看到map task的命名规则:

// TaskAttemptID represents the immutable and unique identifier for a task attempt. // Each task attempt is one particular instance of a Map or Reduce Task identified by TaskID. // An example TaskAttemptID is : attempt_200707121733_0003_m_000005_0// zeroth task attempt for the fifth map task in the third job running at the jobtracker started at 200707121733public class TaskAttemptID extends org.apache.hadoop.mapred.ID {  protected static final String ATTEMPT = "attempt";  private TaskID taskId;  // ...... }


0