Python怎么实现遗传算法
发表于:2025-01-19 作者:千家信息网编辑
千家信息网最后更新 2025年01月19日,这篇文章给大家分享的是有关Python怎么实现遗传算法的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。(一)问题遗传算法求解正方形拼图游戏(二)代码#!/usr/bin/en
千家信息网最后更新 2025年01月19日Python怎么实现遗传算法
这篇文章给大家分享的是有关Python怎么实现遗传算法的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。
(一)问题
遗传算法求解正方形拼图游戏
(二)代码
#!/usr/bin/env python# -*- coding: utf-8 -*- from PIL import Image, ImageDrawimport osimport gcimport random as rimport minpy.numpy as np class Color(object): ''' 定义颜色的类,这个类包含r,g,b,a表示颜色属性 ''' def __init__(self): self.r = r.randint(0, 255) self.g = r.randint(0, 255) self.b = r.randint(0, 255) self.a = r.randint(95, 115) def mutate_or_not(rate): ''' 生成随机数,判断是否需要变异 ''' return True if rate > r.random() else False class Triangle(object): ''' 定义三角形的类 属性: ax,ay,bx,by,cx,cy:表示每个三角形三个顶点的坐标 color : 表示三角形的颜色 img_t : 三角形绘制成的图,用于合成图片 方法: mutate_from(self, parent): 从父代三角形变异 draw_it(self, size=(256, 256)): 绘制三角形 ''' max_mutate_rate = 0.08 mid_mutate_rate = 0.3 min_mutate_rate = 0.8 def __init__(self, size=(255, 255)): t = r.randint(0, size[0]) self.ax = r.randint(0, size[0]) self.ay = r.randint(0, size[1]) self.bx = self.ax+t self.by = self.ay self.cx = self.ax+t self.cy = self.ay-t self.dx = self.ax self.dy = self.ay-t self.color = Color() self.img_t = None def mutate_from(self, parent): if mutate_or_not(self.max_mutate_rate): t = r.randint(0, 255) self.ax = r.randint(0, 255) self.ay = r.randint(0, 255) self.bx = self.ax + t self.by = self.ay self.dx = self.ax self.dy = self.ay - t self.cx = self.ax + t self.cy = self.ay - t if mutate_or_not(self.mid_mutate_rate): t = min(max(0, parent.ax + r.randint(-15, 15)), 255) self.ax = min(max(0, parent.ax + r.randint(-15, 15)), 255) self.ay = min(max(0, parent.ay + r.randint(-15, 15)), 255) self.bx = self.ax + t self.by = self.ay self.dx = self.ax self.dy = self.ay - t self.cx = self.ax + t self.cy = self.ay - t if mutate_or_not(self.min_mutate_rate): t = min(max(0, parent.ax + r.randint(-3, 3)), 255) self.ax = min(max(0, parent.ax + r.randint(-3, 3)), 255) self.ay = min(max(0, parent.ay + r.randint(-3, 3)), 255) self.bx = self.ax + t self.by = self.ay self.dx = self.ax self.dy = self.ay - t self.cx = self.ax + t self.cy = self.ay - t # color if mutate_or_not(self.max_mutate_rate): self.color.r = r.randint(0, 255) if mutate_or_not(self.mid_mutate_rate): self.color.r = min(max(0, parent.color.r + r.randint(-30, 30)), 255) if mutate_or_not(self.min_mutate_rate): self.color.r = min(max(0, parent.color.r + r.randint(-10, 10)), 255) if mutate_or_not(self.max_mutate_rate): self.color.g = r.randint(0, 255) if mutate_or_not(self.mid_mutate_rate): self.color.g = min(max(0, parent.color.g + r.randint(-30, 30)), 255) if mutate_or_not(self.min_mutate_rate): self.color.g = min(max(0, parent.color.g + r.randint(-10, 10)), 255) if mutate_or_not(self.max_mutate_rate): self.color.b = r.randint(0, 255) if mutate_or_not(self.mid_mutate_rate): self.color.b = min(max(0, parent.color.b + r.randint(-30, 30)), 255) if mutate_or_not(self.min_mutate_rate): self.color.b = min(max(0, parent.color.b + r.randint(-10, 10)), 255) # alpha if mutate_or_not(self.mid_mutate_rate): self.color.a = r.randint(95, 115) # if mutate_or_not(self.mid_mutate_rate): # self.color.a = min(max(0, parent.color.a + r.randint(-30, 30)), 255) # if mutate_or_not(self.min_mutate_rate): # self.color.a = min(max(0, parent.color.a + r.randint(-10, 10)), 255) def draw_it(self, size=(256, 256)): self.img_t = Image.new('RGBA', size) draw = ImageDraw.Draw(self.img_t) draw.polygon([(self.ax, self.ay), (self.bx, self.by), (self.cx, self.cy), (self.dx, self.dy)], fill=(self.color.r, self.color.g, self.color.b, self.color.a)) return self.img_t class Canvas(object): ''' 定义每一张图片的类 属性: mutate_rate : 变异概率 size : 图片大小 target_pixels: 目标图片像素值 方法: add_triangles(self, num=1) : 在图片类中生成num个三角形 mutate_from_parent(self, parent): 从父代图片对象进行变异 calc_match_rate(self) : 计算环境适应度 draw_it(self, i) : 保存图片 ''' mutate_rate = 0.01 size = (256, 256) target_pixels = [] def __init__(self): self.triangles = [] self.match_rate = 0 self.img = None def add_triangles(self, num=1): for i in range(0, num): triangle = Triangle() self.triangles.append(triangle) def mutate_from_parent(self, parent): flag = False for triangle in parent.triangles: t = triangle if mutate_or_not(self.mutate_rate): flag = True a = Triangle() a.mutate_from(t) self.triangles.append(a) continue self.triangles.append(t) if not flag: self.triangles.pop() t = parent.triangles[r.randint(0, len(parent.triangles) - 1)] a = Triangle() a.mutate_from(t) self.triangles.append(a) def calc_match_rate(self): if self.match_rate > 0: return self.match_rate self.match_rate = 0 self.img = Image.new('RGBA', self.size) draw = ImageDraw.Draw(self.img) draw.polygon([(0, 0), (0, 255), (255, 255), (255, 0)], fill=(255, 255, 255, 255)) for triangle in self.triangles: self.img = Image.alpha_composite(self.img, triangle.img_t or triangle.draw_it(self.size)) # 与下方代码功能相同,此版本便于理解但效率低 # pixels = [self.img.getpixel((x, y)) for x in range(0, self.size[0], 2) for y in range(0, self.size[1], 2)] # for i in range(0, min(len(pixels), len(self.target_pixels))): # delta_red = pixels[i][0] - self.target_pixels[i][0] # delta_green = pixels[i][1] - self.target_pixels[i][1] # delta_blue = pixels[i][2] - self.target_pixels[i][2] # self.match_rate += delta_red * delta_red + \ # delta_green * delta_green + \ # delta_blue * delta_blue arrs = [np.array(x) for x in list(self.img.split())] # 分解为RGBA四通道 for i in range(3): # 对RGB通道三个矩阵分别与目标图片相应通道作差取平方加和评估相似度 self.match_rate += np.sum(np.square(arrs[i]-self.target_pixels[i]))[0] def draw_it(self, i): #self.img.save(os.path.join(PATH, "%s_%d_%d_%d.png" % (PREFIX, len(self.triangles), i, self.match_rate))) self.img.save(os.path.join(PATH, "%d.png" % (i))) def main(): global LOOP, PREFIX, PATH, TARGET, TRIANGLE_NUM # 声明全局变量 img = Image.open(TARGET).resize((256, 256)).convert('RGBA') size = (256, 256) Canvas.target_pixels = [np.array(x) for x in list(img.split())] # 生成一系列的图片作为父本,选择其中最好的一个进行遗传 parentList = [] for i in range(20): print('正在生成第%d个初代个体' % (i)) parentList.append(Canvas()) parentList[i].add_triangles(TRIANGLE_NUM) parentList[i].calc_match_rate() parent = sorted(parentList, key=lambda x: x.match_rate)[0] del parentList gc.collect() # 进入遗传算法的循环 i = 0 while i < 30000: childList = [] # 每一代从父代中变异出10个个体 for j in range(10): childList.append(Canvas()) childList[j].mutate_from_parent(parent) childList[j].calc_match_rate() child = sorted(childList, key=lambda x: x.match_rate)[0] # 选择其中适应度最好的一个个体 del childList gc.collect() parent.calc_match_rate() if i % LOOP == 0: print ('d parent rate d \t child1 rate d' % (i, parent.match_rate, child.match_rate)) parent = parent if parent.match_rate < child.match_rate else child # 如果子代比父代更适应环境,那么子代成为新的父代 # 否则保持原样 child = None if i % LOOP == 0: # 每隔LOOP代保存一次图片 parent.draw_it(i) #print(parent.match_rate) #print ('d parent rate d \t child1 rate d' % (i, parent.match_rate, child.match_rate)) i += 1 '''定义全局变量,获取待处理的图片名'''NAME = input('请输入原图片文件名:')LOOP = 100PREFIX = NAME.split('/')[-1].split('.')[0] # 取文件名PATH = os.path.abspath('.') # 取当前路径PATH = os.path.join(PATH,'results')TARGET = NAME # 源图片文件名TRIANGLE_NUM = 256 # 三角形个数 if __name__ == '__main__': #print('开始进行遗传算法') main()
(三)运行结果
(四)结果描述
代码是在遗传算法求解三角形火狐拼图改进而来,遗传算法求解正方形拼图游戏只需随机生成一个坐标和一个常数值(作为正方形的边长),通过正方形的性质,可以写出正方形其他三个点的坐标,确定了四个点的坐标之后,进行遗传和变异。
感谢各位的阅读!关于"Python怎么实现遗传算法"这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,让大家可以学到更多知识,如果觉得文章不错,可以把它分享出去让更多的人看到吧!
图片
遗传
三角形
三角
算法
变异
正方
正方形
坐标
生成
三个
个体
代码
属性
文件
文件名
通道
颜色
全局
内容
数据库的安全要保护哪些东西
数据库安全各自的含义是什么
生产安全数据库录入
数据库的安全性及管理
数据库安全策略包含哪些
海淀数据库安全审计系统
建立农村房屋安全信息数据库
易用的数据库客户端支持安全管理
连接数据库失败ssl安全错误
数据库的锁怎样保障安全
中国大学生网络安全排名
手机服务器管理app
网页游戏服务器价格
蓝盾网络安全产品怎么样
网络安全防护演练
热155网络安全
一台服务器有多个不同的登录ip
无域名邮箱服务器搭建
360手机系统服务器关闭
去库存 数据库
医学类软件开发企业
如何快速找到数据库的隐藏文件
北京安卓软件开发收费标准
香港服务器改装硬盘
江西企业中台数据库
uniapp用什么软件开发合适
宝塔面板修改数据库名
服务器可以储存什么
mtk软件开发平台
计算机网络技术专业升本学校
深圳网络安全工程师工资
网络安全记心中班会内容
服务器端口和网络不匹配
进销存数据库 操作
表格怎么录入分析数据库
网络存储服务器搭建
静安区互联网络技术服务
华为服务器的型号
数据库nul
凤凰网络安全科技馆