千家信息网

PostgreSQL绍聚合函数实现中怎么使用的simplehash

发表于:2024-12-12 作者:千家信息网编辑
千家信息网最后更新 2024年12月12日,这篇文章主要讲解了"PostgreSQL绍聚合函数实现中怎么使用的simplehash",文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习"PostgreSQ
千家信息网最后更新 2024年12月12日PostgreSQL绍聚合函数实现中怎么使用的simplehash

这篇文章主要讲解了"PostgreSQL绍聚合函数实现中怎么使用的simplehash",文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习"PostgreSQL绍聚合函数实现中怎么使用的simplehash"吧!

//src/backend/executor/execGrouping.c#define SH_HASH_KEY(tb, key) TupleHashTableHash(tb, key) //SH_HASH_KEY --> TupleHashTableHash#define SH_EQUAL(tb, a, b) TupleHashTableMatch(tb, a, b) == 0 //SH_EQUAL --> TupleHashTableMatch

一、数据结构

TupleHashTable
哈希表定义

typedef struct TupleHashTableData *TupleHashTable;typedef struct TupleHashTableData{    //底层Hash表    tuplehash_hash *hashtab;    /* underlying hash table */    //在检索键中的列数    int            numCols;        /* number of columns in lookup key */    //键列中的属性格式    AttrNumber *keyColIdx;        /* attr numbers of key columns */    //数据类型的哈希函数    FmgrInfo   *tab_hash_funcs; /* hash functions for table datatype(s) */    //数据类型比较器    ExprState  *tab_eq_func;    /* comparator for table datatype(s) */    //包含数据表的内存上下文    MemoryContext tablecxt;        /* memory context containing table */    //函数解析上下文    MemoryContext tempcxt;        /* context for function evaluations */    //构造每个哈希条目的实际大小    Size        entrysize;        /* actual size to make each hash entry */    //依赖数据表条目的slot    TupleTableSlot *tableslot;    /* slot for referencing table entries */    /* The following fields are set transiently for each table search: */    //下面字段为每一个表检索时临时设置    //当前输入tuple slot    TupleTableSlot *inputslot;    /* current input tuple's slot */    //输入数据类型的哈希函数    FmgrInfo   *in_hash_funcs;    /* hash functions for input datatype(s) */    //input vs table的比较器    ExprState  *cur_eq_func;    /* comparator for input vs. table */    //哈希函数IV    uint32        hash_iv;        /* hash-function IV */    //表达式上下文    ExprContext *exprcontext;    /* expression context */}            TupleHashTableData;typedef tuplehash_iterator TupleHashIterator;/* type definitions *///哈希表类型定义typedef struct SH_TYPE //tuplehash_hash{    /*     * Size of data / bucket array, 64 bits to handle UINT32_MAX sized hash     * tables.  Note that the maximum number of elements is lower     * (SH_MAX_FILLFACTOR)     * 数据/桶数组大小,64 bit用于处理UINT32_MAX哈希表.     * 注意元素最大格式小于(SH_MAX_FILLFACTOR)     */    uint64        size;    /* how many elements have valid contents */    //有多少个元素具有有效内容    uint32        members;    /* mask for bucket and size calculations, based on size */    //基于大小,用于计算桶和大小的掩码    uint32        sizemask;    /* boundary after which to grow hashtable */    //哈希表增长的阈值    uint32        grow_threshold;    /* hash buckets */    //哈希桶    SH_ELEMENT_TYPE *data;    /* memory context to use for allocations */    //用于分配的内存上下文    MemoryContext ctx;    /* user defined data, useful for callbacks */    //用户自定义的数据,通常用于回调函数    void       *private_data;}            SH_TYPE;//实际是tuplehash_hash

TupleHashEntryData
哈希表条目

typedef struct TupleHashEntryData *TupleHashEntry;typedef struct TupleHashTableData *TupleHashTable;typedef struct TupleHashEntryData{    //该组第一个元组的拷贝    MinimalTuple firstTuple;    /* copy of first tuple in this group */    //用户数据    void       *additional;        /* user data */    //状态(见SH_STATUS)    uint32        status;            /* hash status */    //哈希值(已缓存)    uint32        hash;            /* hash value (cached) */} TupleHashEntryData;typedef enum SH_STATUS{    SH_STATUS_EMPTY = 0x00,    SH_STATUS_IN_USE = 0x01} SH_STATUS;

MinimalTuple
最小化的元组定义

/* * MinimalTuple is an alternative representation that is used for transient * tuples inside the executor, in places where transaction status information * is not required, the tuple rowtype is known, and shaving off a few bytes * is worthwhile because we need to store many tuples.  The representation * is chosen so that tuple access routines can work with either full or * minimal tuples via a HeapTupleData pointer structure.  The access routines * see no difference, except that they must not access the transaction status * or t_ctid fields because those aren't there. * * For the most part, MinimalTuples should be accessed via TupleTableSlot * routines.  These routines will prevent access to the "system columns" * and thereby prevent accidental use of the nonexistent fields. * * MinimalTupleData contains a length word, some padding, and fields matching * HeapTupleHeaderData beginning with t_infomask2. The padding is chosen so * that offsetof(t_infomask2) is the same modulo MAXIMUM_ALIGNOF in both * structs.   This makes data alignment rules equivalent in both cases. * * When a minimal tuple is accessed via a HeapTupleData pointer, t_data is * set to point MINIMAL_TUPLE_OFFSET bytes before the actual start of the * minimal tuple --- that is, where a full tuple matching the minimal tuple's * data would start.  This trick is what makes the structs seem equivalent. * * Note that t_hoff is computed the same as in a full tuple, hence it includes * the MINIMAL_TUPLE_OFFSET distance.  t_len does not include that, however. * * MINIMAL_TUPLE_DATA_OFFSET is the offset to the first useful (non-pad) data * other than the length word.  tuplesort.c and tuplestore.c use this to avoid * writing the padding to disk. */#define MINIMAL_TUPLE_OFFSET \    ((offsetof(HeapTupleHeaderData, t_infomask2) - sizeof(uint32)) / MAXIMUM_ALIGNOF * MAXIMUM_ALIGNOF)#define MINIMAL_TUPLE_PADDING \    ((offsetof(HeapTupleHeaderData, t_infomask2) - sizeof(uint32)) % MAXIMUM_ALIGNOF)#define MINIMAL_TUPLE_DATA_OFFSET \    offsetof(MinimalTupleData, t_infomask2)struct MinimalTupleData{    uint32        t_len;            /* actual length of minimal tuple */    char        mt_padding[MINIMAL_TUPLE_PADDING];    /* Fields below here must match HeapTupleHeaderData! */    uint16        t_infomask2;    /* number of attributes + various flags */    uint16        t_infomask;        /* various flag bits, see below */    uint8        t_hoff;            /* sizeof header incl. bitmap, padding */    /* ^ - 23 bytes - ^ */    bits8        t_bits[FLEXIBLE_ARRAY_MEMBER];    /* bitmap of NULLs */    /* MORE DATA FOLLOWS AT END OF STRUCT */};/* typedef appears in htup.h */#define SizeofMinimalTupleHeader offsetof(MinimalTupleData, t_bits)typedef struct MinimalTupleData MinimalTupleData;typedef MinimalTupleData *MinimalTuple;

二、源码解读

TupleHashTableHash
TupleHashTableHash用于计算tuple的哈希值(分组列值)

/* * Compute the hash value for a tuple * 计算tuple的哈希值 * * The passed-in key is a pointer to TupleHashEntryData.  In an actual hash * table entry, the firstTuple field points to a tuple (in MinimalTuple * format).  LookupTupleHashEntry sets up a dummy TupleHashEntryData with a * NULL firstTuple field --- that cues us to look at the inputslot instead. * This convention avoids the need to materialize virtual input tuples unless * they actually need to get copied into the table. * 传入的key是指向TupleHashEntryData结构体的指针. * 在实际的哈希表条目中,firstTuple字段指向一个元组(以MinimalTuple格式保存). * LookupTupleHashEntry会使用NULL firstTuple字段设置一个虚拟的TupleHashEntryData. *   --- 这可以提示我们转而查看inputslot. * 这个转换避免了物化虚拟输入元组,除非它们需要实际拷贝到数据表中. * * Also, the caller must select an appropriate memory context for running * the hash functions. (dynahash.c doesn't change CurrentMemoryContext.) * 同时,调用者必须选择合适的内存上下文用于运行哈希函数. * (dynahash.c不会改变CurrentMemoryContext) */static uint32TupleHashTableHash(struct tuplehash_hash *tb, const MinimalTuple tuple){    //Tuple 哈希表    TupleHashTable hashtable = (TupleHashTable) tb->private_data;    //列数    int            numCols = hashtable->numCols;    //属性编号    AttrNumber *keyColIdx = hashtable->keyColIdx;    //哈希key    uint32        hashkey = hashtable->hash_iv;    //元组slot    TupleTableSlot *slot;    //哈希函数指针    FmgrInfo   *hashfunctions;    int            i;    if (tuple == NULL)//元组为NULL    {        /* Process the current input tuple for the table */        //处理当前输入元组        slot = hashtable->inputslot;        hashfunctions = hashtable->in_hash_funcs;    }    else    {        /*         * Process a tuple already stored in the table.         * 处理已存储在数据表中的元组.         *         * (this case never actually occurs due to the way simplehash.h is         * used, as the hash-value is stored in the entries)         * (这种情况因为simplehash.h的使用,实际上不会发生,因为哈希值存储在条目中)         */        slot = hashtable->tableslot;        //存储MinimalTuple        ExecStoreMinimalTuple(tuple, slot, false);        hashfunctions = hashtable->tab_hash_funcs;    }    for (i = 0; i < numCols; i++)    {        //------- 循环遍历列数        //获取属性编号        AttrNumber    att = keyColIdx[i];        Datum        attr;//属性        bool        isNull;//是否为NULL?        /* rotate hashkey left 1 bit at each step */        //每一步向左移动一位        hashkey = (hashkey << 1) | ((hashkey & 0x80000000) ? 1 : 0);        //获取属性值        attr = slot_getattr(slot, att, &isNull);        //如为null,则哈希key设置为0        if (!isNull)            /* treat nulls as having hash key 0 */        {            //不为NULL            uint32        hkey;            //调用哈希函数            hkey = DatumGetUInt32(FunctionCall1(&hashfunctions[i],                                                attr));            hashkey ^= hkey;        }    }    /*     * The way hashes are combined above, among each other and with the IV,     * doesn't lead to good bit perturbation. As the IV's goal is to lead to     * achieve that, perform a round of hashing of the combined hash -     * resulting in near perfect perturbation.     * 上面哈希的的组合方式,彼此之间以及与IV的组合方式,都不会导致位扰动.     * 因为IV存在的目的是实现该目标,执行组合哈希的hashing取整 -- 结果是完美的扰动.     */    return murmurhash42(hashkey);}

TupleHashTableMatch
TupleHashTableMatch用于判断两个tuples是否匹配(有相同的hash值)

/* * See whether two tuples (presumably of the same hash value) match * 检查两个tuples是否匹配(有相同的hash值) * * As above, the passed pointers are pointers to TupleHashEntryData. * 如上所述,传入的指针指向TupleHashEntryData */static intTupleHashTableMatch(struct tuplehash_hash *tb, const MinimalTuple tuple1, const MinimalTuple tuple2){    TupleTableSlot *slot1;    TupleTableSlot *slot2;    TupleHashTable hashtable = (TupleHashTable) tb->private_data;    ExprContext *econtext = hashtable->exprcontext;    /*     * We assume that simplehash.h will only ever call us with the first     * argument being an actual table entry, and the second argument being     * LookupTupleHashEntry's dummy TupleHashEntryData.  The other direction     * could be supported too, but is not currently required.     */    Assert(tuple1 != NULL);    slot1 = hashtable->tableslot;    ExecStoreMinimalTuple(tuple1, slot1, false);    Assert(tuple2 == NULL);    slot2 = hashtable->inputslot;    /* For crosstype comparisons, the inputslot must be first */    econtext->ecxt_innertuple = slot2;    econtext->ecxt_outertuple = slot1;    return !ExecQualAndReset(hashtable->cur_eq_func, econtext);}

三、跟踪分析

测试脚本

-- 禁用并行set max_parallel_workers_per_gather=0;select bh,avg(c1),min(c1),max(c2) from t_agg_simple group by bh;

跟踪分析

(gdb) b TupleHashTableHashBreakpoint 1 at 0x6d3b2b: file execGrouping.c, line 379.(gdb) b TupleHashTableMatchBreakpoint 2 at 0x6d3c79: file execGrouping.c, line 446.(gdb)  (gdb) cContinuing.Breakpoint 1, TupleHashTableHash (tb=0x2dd2720, tuple=0x0) at execGrouping.c:379379        TupleHashTable hashtable = (TupleHashTable) tb->private_data;(gdb)

输入参数

(gdb) p *tb$1 = {size = 256, members = 0, sizemask = 255, grow_threshold = 230, data = 0x2ddca00, ctx = 0x2db5310,   private_data = 0x2dd2890}(gdb) p *tb->data$2 = {firstTuple = 0x0, additional = 0x0, status = 0, hash = 0}

获取分组列数

(gdb) n380        int            numCols = hashtable->numCols;(gdb) p *hashtable$3 = {hashtab = 0x2dd2720, numCols = 1, keyColIdx = 0x2dd2680, tab_hash_funcs = 0x2db72d0, tab_eq_func = 0x2ddea18,   tablecxt = 0x2dcc370, tempcxt = 0x2db7320, entrysize = 24, tableslot = 0x2dd2928, inputslot = 0x2db7238,   in_hash_funcs = 0x2db72d0, cur_eq_func = 0x2ddea18, hash_iv = 0, exprcontext = 0x2ddf338}(gdb) p tb->private_data$4 = (void *) 0x2dd2890

获取分组列属性编号

(gdb) n381        AttrNumber *keyColIdx = hashtable->keyColIdx;(gdb) 382        uint32        hashkey = hashtable->hash_iv;(gdb) p *keyColIdx$5 = 1

如输入tuple为NULL,设置slot和哈希函数

(gdb) n387        if (tuple == NULL)(gdb) p hashkey$6 = 0(gdb) n390            slot = hashtable->inputslot;(gdb) 391            hashfunctions = hashtable->in_hash_funcs;

开始遍历分组列
获取hashkey

(gdb) n406        for (i = 0; i < numCols; i++)(gdb) p numCols$8 = 1(gdb) n408            AttrNumber    att = keyColIdx[i];(gdb) 413            hashkey = (hashkey << 1) | ((hashkey & 0x80000000) ? 1 : 0);(gdb) p att$9 = 1(gdb) p hashkey$10 = 0

获取属性值

(gdb) n415            attr = slot_getattr(slot, att, &isNull);(gdb) p hashkey$11 = 0(gdb) n417            if (!isNull)            /* treat nulls as having hash key 0 */(gdb) p attr$12 = 140535426168416(gdb) x\16c attrInvalid character '\' in expression.(gdb) x/16c attr0x7fd0f427b660:    11 '\v'    71 'G'    90 'Z'    48 '0'    49 '1'    0 '\000'    0 '\000'    0 '\000'0x7fd0f427b668:    1 '\001'    0 '\000'    0 '\000'    0 '\000'    1 '\001'    0 '\000'    0 '\000'    0 '\000'

计算哈希值

(gdb) n421                hkey = DatumGetUInt32(FunctionCall1(&hashfunctions[i],(gdb) p hashfunctions[i]$13 = {fn_addr = 0x4c8a31 , fn_oid = 400, fn_nargs = 1, fn_strict = true, fn_retset = false, fn_stats = 2 '\002',   fn_extra = 0x0, fn_mcxt = 0x2db5310, fn_expr = 0x0}(gdb) p i$14 = 0(gdb) n423                hashkey ^= hkey;(gdb) p hkey$15 = 3431319292(gdb) n406        for (i = 0; i < numCols; i++)(gdb) p hashkey$16 = 3431319292

返回结果

(gdb) n433        return murmurhash42(hashkey);(gdb) p murmurhash42(hashkey)$17 = 443809650(gdb) n434    }(gdb) tuplehash_insert (tb=0x2dd2720, key=0x0, found=0x7fff585be487) at ../../../src/include/lib/simplehash.h:497497        insertdist = 0;(gdb)

TupleHashTableMatch
进入TupleHashTableMatch

(gdb) cContinuing.Breakpoint 2, TupleHashTableMatch (tb=0x2dd2720, tuple1=0x2dcc488, tuple2=0x0) at execGrouping.c:446446        TupleHashTable hashtable = (TupleHashTable) tb->private_data;(gdb)

输入参数

(gdb) p *tb$18 = {size = 256, members = 1, sizemask = 255, grow_threshold = 230, data = 0x2ddca00, ctx = 0x2db5310,   private_data = 0x2dd2890}(gdb) p *tuple1$19 = {t_len = 21, mt_padding = "\000\000\000\000\000", t_infomask2 = 1, t_infomask = 2, t_hoff = 24 '\030',   t_bits = 0x2dcc497 ""}

对比是否匹配

(gdb) n447        ExprContext *econtext = hashtable->exprcontext;(gdb) 455        Assert(tuple1 != NULL);(gdb) 456        slot1 = hashtable->tableslot;(gdb) 457        ExecStoreMinimalTuple(tuple1, slot1, false);(gdb) 458        Assert(tuple2 == NULL);(gdb) 459        slot2 = hashtable->inputslot;(gdb) 462        econtext->ecxt_innertuple = slot2;(gdb) 463        econtext->ecxt_outertuple = slot1;(gdb) 464        return !ExecQualAndReset(hashtable->cur_eq_func, econtext);(gdb) p hashtable->cur_eq_func$20 = (ExprState *) 0x2ddea18(gdb) p *hashtable->cur_eq_func$21 = {tag = {type = T_ExprState}, flags = 7 '\a', resnull = false, resvalue = 0, resultslot = 0x0, steps = 0x2ddeab0,   evalfunc = 0x6cd882 , expr = 0x0, evalfunc_private = 0x6cb43e , steps_len = 7,   steps_alloc = 16, parent = 0x0, ext_params = 0x0, innermost_caseval = 0x0, innermost_casenull = 0x0,   innermost_domainval = 0x0, innermost_domainnull = 0x0}

返回值

$22 = true(gdb) n465    }(gdb) tuplehash_insert (tb=0x2dd2720, key=0x0, found=0x7fff585be487) at ../../../src/include/lib/simplehash.h:556556                Assert(entry->status == SH_STATUS_IN_USE);(gdb)

感谢各位的阅读,以上就是"PostgreSQL绍聚合函数实现中怎么使用的simplehash"的内容了,经过本文的学习后,相信大家对PostgreSQL绍聚合函数实现中怎么使用的simplehash这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是,小编将为大家推送更多相关知识点的文章,欢迎关注!

0