千家信息网

eclipse上搭建hadoop开发环境

发表于:2025-01-27 作者:千家信息网编辑
千家信息网最后更新 2025年01月27日,一、概述1.实验使用的Hadoop集群为伪分布式模式,eclipse相关配置已完成;2.软件版本为hadoop-2.7.3.tar.gz、apache-maven-3.5.0.rar。二、使用ecli
千家信息网最后更新 2025年01月27日eclipse上搭建hadoop开发环境

一、概述

1.实验使用的Hadoop集群为伪分布式模式,eclipse相关配置已完成;

2.软件版本为hadoop-2.7.3.tar.gz、apache-maven-3.5.0.rar。

二、使用eclipse连接hadoop集群进行开发

1.在开发主机上配置hadoop

①将hadoop-2.7.3.tar.gz解压到本地主机上


②使用windows版本的hadoop中的bin替换目标中的bin文件夹

③配置windows上的hadoop环境变量


2.在eclipse上配置hadoop集群信息

①在eclipse中添加hadoop路径


②配置hadoop集群访问信息


3.在hadoop集群中取消权限验证

hdfs-site.xml    dfs.permissions    false


4.创建一个文件测试连接权限


5.安装maven

①将maven解压到开发主机上


②在eclipse上添加maven路径


5.新建maven工程


6.修改maven配置文件(maven/pom.xml)

                  org.apache.hadoop            hadoop-client            2.7.3                        junit          junit          3.8.1          test      


7.新建一个类用于测试(WordCount)

import java.io.IOException;import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration;import org.apache.hadoop.fs.Path;import org.apache.hadoop.io.IntWritable;import org.apache.hadoop.io.Text;import org.apache.hadoop.mapreduce.Job;import org.apache.hadoop.mapreduce.Mapper;import org.apache.hadoop.mapreduce.Reducer;import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;import org.apache.hadoop.util.GenericOptionsParser; public class WordCount {   public static class TokenizerMapper       extends Mapper{       private final static IntWritable one = new IntWritable(1);    private Text word = new Text();         public void map(Object key, Text value, Context context                    ) throws IOException, InterruptedException {      StringTokenizer itr = new StringTokenizer(value.toString());      while (itr.hasMoreTokens()) {        word.set(itr.nextToken());        context.write(word, one);      }    }  }   public static class IntSumReducer       extends Reducer {    private IntWritable result = new IntWritable();     public void reduce(Text key, Iterable values,                       Context context                       ) throws IOException, InterruptedException {      int sum = 0;      for (IntWritableval : values) {        sum += val.get();      }      result.set(sum);      context.write(key, result);    }  }   public static void main(String[] args) throws Exception {    Configuration conf = new Configuration();    String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();    if (otherArgs.length < 2) {      System.err.println("Usage: wordcount  [...] ");      System.exit(2);    }    Job job = Job.getInstance(conf, "word count");    job.setJarByClass(WordCount.class);    job.setMapperClass(TokenizerMapper.class);    job.setCombinerClass(IntSumReducer.class);    job.setReducerClass(IntSumReducer.class);    job.setOutputKeyClass(Text.class);    job.setOutputValueClass(IntWritable.class);    for (int i = 0; i < otherArgs.length - 1; ++i) {      FileInputFormat.addInputPath(job, new Path(otherArgs[i]));    }    FileOutputFormat.setOutputPath(job,      new Path(otherArgs[otherArgs.length - 1]));    System.exit(job.waitForCompletion(true) ? 0 : 1);  }}

8.配置WordCount

①将log4j.properties移动到WordCount类下

②设置WordCount的运行自变量

8.运行测试

三、jar包的导出与提交执行

1.导出WordCount


2.将导出的jar包上传到hadoop集群

[hadoop@hadoop ~]$ lswc.jar


3.运行

[hadoop@hadoop ~]$ hadoop jar wc.jar WordCount /user/hadoop/input/* /user/hadoop/output/out17/09/06 22:36:56 INFO client.RMProxy: Connecting to ResourceManager at hadoop/192.168.100.141:803217/09/06 22:36:57 INFO input.FileInputFormat: Total input paths to process : 117/09/06 22:36:58 INFO mapreduce.JobSubmitter: number of splits:117/09/06 22:36:58 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1504744740212_000117/09/06 22:36:59 INFO impl.YarnClientImpl: Submitted application application_1504744740212_000117/09/06 22:36:59 INFO mapreduce.Job: The url to track the job: http://hadoop:8088/proxy/application_1504744740212_0001/17/09/06 22:36:59 INFO mapreduce.Job: Running job: job_1504744740212_000117/09/06 22:37:36 INFO mapreduce.Job: Job job_1504744740212_0001 running in uber mode : false17/09/06 22:37:36 INFO mapreduce.Job:  map 0% reduce 0/09/06 22:38:26 INFO mapreduce.Job:  map 100% reduce 0/09/06 22:38:42 INFO mapreduce.Job:  map 100% reduce 100/09/06 22:38:46 INFO mapreduce.Job: Job job_1504744740212_0001 completed successfully


4.查看运行结果

[hadoop@hadoop ~]$ hdfs dfs -cat /user/hadoop/output/out/part-r-00000"AS              1"GCC        1"License");     1&            1'Aalto       1'Apache         4'ArrayDeque',    1'Bouncy         1'Caliper',       1'Compress-LZF',   1……


0