千家信息网

R语言列表和数据框怎么使用

发表于:2025-01-22 作者:千家信息网编辑
千家信息网最后更新 2025年01月22日,本篇内容主要讲解"R语言列表和数据框怎么使用",感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习"R语言列表和数据框怎么使用"吧!1.列表列表"list"是一种比
千家信息网最后更新 2025年01月22日R语言列表和数据框怎么使用

本篇内容主要讲解"R语言列表和数据框怎么使用",感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习"R语言列表和数据框怎么使用"吧!

1.列表

列表"list"是一种比较的特别的对象集合,不同的序号对于不同的元素,当然元素的也可以是不同类型的,那么我们用R语言先简单来构造一个列表。

1.1创建

> a<-c(1:20)> b<-matrix(1:20,4,5)> mlist<-list(a,b)> mlist[[1]] [1]  1  2  3  4  5  6  7  8  9 10 11 12 13 14[15] 15 16 17 18 19 20 [[2]]     [,1] [,2] [,3] [,4] [,5][1,]    1    5    9   13   17[2,]    2    6   10   14   18[3,]    3    7   11   15   19[4,]    4    8   12   16   20

1.2 访问

1.2.1 下标访问

> mlist[1][[1]] [1]  1  2  3  4  5  6  7  8  9 10 11 12 13 14[15] 15 16 17 18 19 20 > mlist[2][[1]]     [,1] [,2] [,3] [,4] [,5][1,]    1    5    9   13   17[2,]    2    6   10   14   18[3,]    3    7   11   15   19[4,]    4    8   12   16   20

1.2.2 名称访问

> state.center["x"]$x [1]  -86.7509 -127.2500 -111.6250  -92.2992 [5] -119.7730 -105.5130  -72.3573  -74.9841 [9]  -81.6850  -83.3736 -126.2500 -113.9300[13]  -89.3776  -86.0808  -93.3714  -98.1156[17]  -84.7674  -92.2724  -68.9801  -76.6459[21]  -71.5800  -84.6870  -94.6043  -89.8065[25]  -92.5137 -109.3200  -99.5898 -116.8510[29]  -71.3924  -74.2336 -105.9420  -75.1449[33]  -78.4686 -100.0990  -82.5963  -97.1239[37] -120.0680  -77.4500  -71.1244  -80.5056[41]  -99.7238  -86.4560  -98.7857 -111.3300[45]  -72.5450  -78.2005 -119.7460  -80.6665[49]  -89.9941 -107.2560

1.2.3 符号访问

> state.center$x [1]  -86.7509 -127.2500 -111.6250  -92.2992 [5] -119.7730 -105.5130  -72.3573  -74.9841 [9]  -81.6850  -83.3736 -126.2500 -113.9300[13]  -89.3776  -86.0808  -93.3714  -98.1156[17]  -84.7674  -92.2724  -68.9801  -76.6459[21]  -71.5800  -84.6870  -94.6043  -89.8065[25]  -92.5137 -109.3200  -99.5898 -116.8510[29]  -71.3924  -74.2336 -105.9420  -75.1449[33]  -78.4686 -100.0990  -82.5963  -97.1239[37] -120.0680  -77.4500  -71.1244  -80.5056[41]  -99.7238  -86.4560  -98.7857 -111.3300[45]  -72.5450  -78.2005 -119.7460  -80.6665[49]  -89.9941 -107.2560

1.3 注意

一个中括号和两个中括号的区别

一个中括号输出的是列表的一个子列表,两个中括号输出的是列表的元素

> class(mlist[1])[1] "list"> class(mlist[[1]])[1] "integer"

我们添加元素时要注意用两个中括号

2.数据框

数据框是R种的一个数据结构,他通常是矩阵形式的数据,但矩阵各列可以是不同类型的,数据框每列是一个变量,没行是一个观测值。

但是,数据框又是一种特殊的列表对象,其class属性为"data.frame",各列表成员必须是向量(数值型、字符型、逻辑型)、因子、数值型矩阵、列表或者其它数据框。向量、因子成员为数据框提供一个变量,如果向量非数值型会被强型转换为因子。而矩阵、列表、数据框等必须和数据框具有相同的行数。

2.1 创建

> state<-data.frame(state.name,state.abb,state.area)> state       state.name state.abb state.area1         Alabama        AL      516092          Alaska        AK     5897573         Arizona        AZ     1139094        Arkansas        AR      531045      California        CA     1586936        Colorado        CO     1042477     Connecticut        CT       50098        Delaware        DE       20579         Florida        FL      5856010        Georgia        GA      5887611         Hawaii        HI       645012          Idaho        ID      8355713       Illinois        IL      5640014        Indiana        IN      3629115           Iowa        IA      5629016         Kansas        KS      8226417       Kentucky        KY      4039518      Louisiana        LA      4852319          Maine        ME      3321520       Maryland        MD      1057721  Massachusetts        MA       825722       Michigan        MI      5821623      Minnesota        MN      8406824    Mississippi        MS      4771625       Missouri        MO      6968626        Montana        MT     14713827       Nebraska        NE      7722728         Nevada        NV     11054029  New Hampshire        NH       930430     New Jersey        NJ       783631     New Mexico        NM     12166632       New York        NY      4957633 North Carolina        NC      5258634   North Dakota        ND      7066535           Ohio        OH      4122236       Oklahoma        OK      6991937         Oregon        OR      9698138   Pennsylvania        PA      4533339   Rhode Island        RI       121440 South Carolina        SC      3105541   South Dakota        SD      7704742      Tennessee        TN      4224443          Texas        TX     26733944           Utah        UT      8491645        Vermont        VT       960946       Virginia        VA      4081547     Washington        WA      6819248  West Virginia        WV      2418149      Wisconsin        WI      5615450        Wyoming        WY      97914>

2.2 访问

2.2.1 下标访问

> state[1]       state.name1         Alabama2          Alaska3         Arizona4        Arkansas5      California6        Colorado7     Connecticut8        Delaware9         Florida10        Georgia11         Hawaii12          Idaho13       Illinois14        Indiana15           Iowa16         Kansas17       Kentucky18      Louisiana19          Maine20       Maryland21  Massachusetts22       Michigan23      Minnesota24    Mississippi25       Missouri26        Montana27       Nebraska28         Nevada29  New Hampshire30     New Jersey31     New Mexico32       New York33 North Carolina34   North Dakota35           Ohio36       Oklahoma37         Oregon38   Pennsylvania39   Rhode Island40 South Carolina41   South Dakota42      Tennessee43          Texas44           Utah45        Vermont46       Virginia47     Washington48  West Virginia49      Wisconsin50        Wyoming

2.2.2 名称访问

> state["state.name"]       state.name1         Alabama2          Alaska3         Arizona4        Arkansas5      California6        Colorado7     Connecticut8        Delaware9         Florida10        Georgia11         Hawaii12          Idaho13       Illinois14        Indiana15           Iowa16         Kansas17       Kentucky18      Louisiana19          Maine20       Maryland21  Massachusetts22       Michigan23      Minnesota24    Mississippi25       Missouri26        Montana27       Nebraska28         Nevada29  New Hampshire30     New Jersey31     New Mexico32       New York33 North Carolina34   North Dakota35           Ohio36       Oklahoma37         Oregon38   Pennsylvania39   Rhode Island40 South Carolina41   South Dakota42      Tennessee43          Texas44           Utah45        Vermont46       Virginia47     Washington48  West Virginia49      Wisconsin50        Wyoming

2.2.3 符号访问

> state$state.name [1] "Alabama"        "Alaska"         [3] "Arizona"        "Arkansas"       [5] "California"     "Colorado"       [7] "Connecticut"    "Delaware"       [9] "Florida"        "Georgia"       [11] "Hawaii"         "Idaho"         [13] "Illinois"       "Indiana"       [15] "Iowa"           "Kansas"        [17] "Kentucky"       "Louisiana"     [19] "Maine"          "Maryland"      [21] "Massachusetts"  "Michigan"      [23] "Minnesota"      "Mississippi"   [25] "Missouri"       "Montana"       [27] "Nebraska"       "Nevada"        [29] "New Hampshire"  "New Jersey"    [31] "New Mexico"     "New York"      [33] "North Carolina" "North Dakota"  [35] "Ohio"           "Oklahoma"      [37] "Oregon"         "Pennsylvania"  [39] "Rhode Island"   "South Carolina"[41] "South Dakota"   "Tennessee"     [43] "Texas"          "Utah"          [45] "Vermont"        "Virginia"      [47] "Washington"     "West Virginia" [49] "Wisconsin"      "Wyoming"

2.2.4 函数访问

> attach(state)The following objects are masked from package:datasets:

2.2.4 函数访问

> attach(state)The following objects are masked from package:datasets:     state.abb, state.area, state.name > state.name [1] "Alabama"        "Alaska"         [3] "Arizona"        "Arkansas"       [5] "California"     "Colorado"       [7] "Connecticut"    "Delaware"       [9] "Florida"        "Georgia"       [11] "Hawaii"         "Idaho"         [13] "Illinois"       "Indiana"       [15] "Iowa"           "Kansas"        [17] "Kentucky"       "Louisiana"     [19] "Maine"          "Maryland"      [21] "Massachusetts"  "Michigan"      [23] "Minnesota"      "Mississippi"   [25] "Missouri"       "Montana"       [27] "Nebraska"       "Nevada"        [29] "New Hampshire"  "New Jersey"    [31] "New Mexico"     "New York"      [33] "North Carolina" "North Dakota"  [35] "Ohio"           "Oklahoma"      [37] "Oregon"         "Pennsylvania"  [39] "Rhode Island"   "South Carolina"[41] "South Dakota"   "Tennessee"     [43] "Texas"          "Utah"          [45] "Vermont"        "Virginia"      [47] "Washington"     "West Virginia" [49] "Wisconsin"      "Wyoming"

到此,相信大家对"R语言列表和数据框怎么使用"有了更深的了解,不妨来实际操作一番吧!这里是网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!

0