千家信息网

Python代码便利并行的方法是什么

发表于:2025-01-20 作者:千家信息网编辑
千家信息网最后更新 2025年01月20日,这篇文章主要讲解了"Python代码便利并行的方法是什么",文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习"Python代码便利并行的方法是什么"吧!传统的
千家信息网最后更新 2025年01月20日Python代码便利并行的方法是什么

这篇文章主要讲解了"Python代码便利并行的方法是什么",文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习"Python代码便利并行的方法是什么"吧!

传统的例子

简单搜索下"Python 多线程教程",不难发现几乎所有的教程都给出涉及类和队列的例子:

import os    import PIL    from multiprocessing importPool    from PIL importImage    SIZE = (75,75)    SAVE_DIRECTORY = 'thumbs'    def get_image_paths(folder):    return(os.path.join(folder, f)     for f in os.listdir(folder)     if'jpeg'in f)    def create_thumbnail(filename):         im = Image.open(filename)        im.thumbnail(SIZE, Image.ANTIALIAS)    base, fname = os.path.split(filename)         save_path = os.path.join(base, SAVE_DIRECTORY, fname)        im.save(save_path)    if __name__ == '__main__':        folder = os.path.abspath(    '11_18_2013_R000_IQM_Big_Sur_Mon__e10d1958e7b766c3e840')        os.mkdir(os.path.join(folder, SAVE_DIRECTORY))        images = get_image_paths(folder)        pool = Pool()        pool.map(creat_thumbnail, images)        pool.close()        pool.join()

哈,看起来有些像 Java 不是吗?

我并不是说使用生产者/消费者模型处理多线程/多进程任务是错误的(事实上,这一模型自有其用武之地)。只是,处理日常脚本任务时我们可以使用更有效率的模型。

问题在于…

首先,你需要一个样板类;其次,你需要一个队列来传递对象;而且,你还需要在通道两端都构建相应的方法来协助其工作(如果需想要进行双向通信或是保存结果还需要再引入一个队列)。

worker 越多,问题越多

按照这一思路,你现在需要一个 worker 线程的线程池。下面是一篇 IBM 经典教程中的例子——在进行网页检索时通过多线程进行加速。

#Example2.py   '''   A more realistic thread pool example   '''   import time   import threading   importQueue   import urllib2   classConsumer(threading.Thread):    def __init__(self, queue):            threading.Thread.__init__(self)   self._queue = queue   def run(self):   whileTrue:                content = self._queue.get()    if isinstance(content, str) and content == 'quit':   break               response = urllib2.urlopen(content)   print'Bye byes!'   defProducer():       urls = [   'http://www.python.org', 'http://www.yahoo.com'   'http://www.scala.org', 'http://www.google.com'   # etc..   ]       queue = Queue.Queue()       worker_threads = build_worker_pool(queue, 4)       start_time = time.time()   # Add the urls to process   for url in urls:            queue.put(url)     # Add the poison pillv   for worker in worker_threads:           queue.put('quit')   for worker in worker_threads:           worker.join()   print'Done! Time taken: {}'.format(time.time() - start_time)   def build_worker_pool(queue, size):       workers = []   for _ in range(size):           worker = Consumer(queue)           worker.start()            workers.append(worker)   return workers   if __name__ == '__main__':   Producer()

这段代码能正确的运行,但仔细看看我们需要做些什么:构造不同的方法、追踪一系列的线程,还有为了解决恼人的死锁问题,我们需要进行一系列的 join 操作。这还只是开始……

至此我们回顾了经典的多线程教程,多少有些空洞不是吗?样板化而且易出错,这样事倍功半的风格显然不那么适合日常使用,好在我们还有更好的方法。

何不试试 map

map 这一小巧精致的函数是简捷实现 Python 程序并行化的关键。map 源于 Lisp 这类函数式编程语言。它可以通过一个序列实现两个函数之间的映射。

urls = ['http://www.yahoo.com', 'http://www.reddit.com']     results = map(urllib2.urlopen, urls)

上面的这两行代码将 urls 这一序列中的每个元素作为参数传递到 urlopen 方法中,并将所有结果保存到 results 这一列表中。其结果大致相当于:

results = []  for url in urls:       results.append(urllib2.urlopen(url))

map 函数一手包办了序列操作、参数传递和结果保存等一系列的操作。

为什么这很重要呢?这是因为借助正确的库,map 可以轻松实现并行化操作。

在 Python 中有个两个库包含了 map 函数:multiprocessing 和它鲜为人知的子库 multiprocessing.dummy.

这里多扯两句:multiprocessing.dummy?mltiprocessing 库的线程版克隆?这是虾米?即便在 multiprocessing 库的官方文档里关于这一子库也只有一句相关描述。而这句描述译成人话基本就是说:"嘛,有这么个东西,你知道就成."相信我,这个库被严重低估了!

dummy 是 multiprocessing 模块的完整克隆,唯一的不同在于 multiprocessing 作用于进程,而 dummy 模块作用于线程(因此也包括了 Python 所有常见的多线程限制)。所以替换使用这两个库异常容易。你可以针对 IO 密集型任务和 CPU 密集型任务来选择不同的库。

动手尝试

使用下面的两行代码来引用包含并行化 map 函数的库:

from multiprocessing importPool    from multiprocessing.dummy importPoolasThreadPool

实例化 Pool 对象:

pool = ThreadPool()

这条简单的语句替代了 example2.py 中 buildworkerpool 函数 7 行代码的工作。它生成了一系列的 worker 线程并完成初始化工作、将它们储存在变量中以方便访问。

Pool 对象有一些参数,这里我所需要关注的只是它的第一个参数:processes. 这一参数用于设定线程池中的线程数。其默认值为当前机器 CPU 的核数。

一般来说,执行 CPU 密集型任务时,调用越多的核速度就越快。但是当处理网络密集型任务时,事情有有些难以预计了,通过实验来确定线程池的大小才是明智的。

pool = ThreadPool(4) # Sets the pool size to 4

线程数过多时,切换线程所消耗的时间甚至会超过实际工作时间。对于不同的工作,通过尝试来找到线程池大小的最优值是个不错的主意。

创建好 Pool 对象后,并行化的程序便呼之欲出了。我们来看看改写后的 example2.py

import urllib2      from multiprocessing.dummy importPoolasThreadPool      urls = [      'http://www.python.org',       'http://www.python.org/about/',      'http://www.onlamp.com/pub/a/python/2003/04/17/metaclasses.html',      'http://www.python.org/doc/',      'http://www.python.org/download/',      'http://www.python.org/getit/',      'http://www.python.org/community/',      'https://wiki.python.org/moin/',      'http://planet.python.org/',      'https://wiki.python.org/moin/LocalUserGroups',      'http://www.python.org/psf/',      'http://docs.python.org/devguide/',      'http://www.python.org/community/awards/'      # etc..      ]      # Make the Pool of workers      pool = ThreadPool(4)       # Open the urls in their own threads      # and return the results      results = pool.map(urllib2.urlopen, urls)      #close the pool and wait for the work to finish      pool.close()       pool.join()      实际起作用的代码只有 4行,其中只有一行是关键的。map 函数轻而易举的取代了前文中超过 40行的例子。为了更有趣一些,我统计了不同方法、不同线程池大小的耗时情况。      # results = []      # for url in urls:      #   result = urllib2.urlopen(url)      #   results.append(result)      # # ------- VERSUS ------- #      # # ------- 4 Pool ------- #      # pool = ThreadPool(4)      # results = pool.map(urllib2.urlopen, urls)      # # ------- 8 Pool ------- #      # pool = ThreadPool(8)      # results = pool.map(urllib2.urlopen, urls)      # # ------- 13 Pool ------- #      # pool = ThreadPool(13)      # results = pool.map(urllib2.urlopen, urls)

结果:

 #        Single thread:  14.4 Seconds   #               4 Pool:   3.1 Seconds   #               8 Pool:   1.4 Seconds   #              13 Pool:   1.3 Seconds

很棒的结果不是吗?这一结果也说明了为什么要通过实验来确定线程池的大小。在我的机器上当线程池大小大于 9 带来的收益就十分有限了。

另一个真实的例子

生成上千张图片的缩略图

这是一个 CPU 密集型的任务,并且十分适合进行并行化。

基础单进程版本

import os   import PIL   from multiprocessing importPool   from PIL importImage   SIZE = (75,75)   SAVE_DIRECTORY = 'thumbs'   def get_image_paths(folder):   return(os.path.join(folder, f)    for f in os.listdir(folder)    if'jpeg'in f)   def create_thumbnail(filename):        im = Image.open(filename)       im.thumbnail(SIZE, Image.ANTIALIAS)   base, fname = os.path.split(filename)        save_path = os.path.join(base, SAVE_DIRECTORY, fname)       im.save(save_path)   if __name__ == '__main__':       folder = os.path.abspath(   '11_18_2013_R000_IQM_Big_Sur_Mon__e10d1958e7b766c3e840')       os.mkdir(os.path.join(folder, SAVE_DIRECTORY))       images = get_image_paths(folder)   for image in images:           create_thumbnail(Image)

上边这段代码的主要工作就是将遍历传入的文件夹中的图片文件,一一生成缩略图,并将这些缩略图保存到特定文件夹中。

这我的机器上,用这一程序处理 6000 张图片需要花费 27.9 秒。

如果我们使用 map 函数来代替 for 循环:

import os  import PIL  from multiprocessing importPool  from PIL importImage  SIZE = (75,75)  SAVE_DIRECTORY = 'thumbs'  def get_image_paths(folder):  return(os.path.join(folder, f)  for f in os.listdir(folder)   if'jpeg'in f)  def create_thumbnail(filename):      im = Image.open(filename)      im.thumbnail(SIZE, Image.ANTIALIAS)  base, fname = os.path.split(filename)       save_path = os.path.join(base, SAVE_DIRECTORY, fname)      im.save(save_path)  if __name__ == '__main__':      folder = os.path.abspath(  '11_18_2013_R000_IQM_Big_Sur_Mon__e10d1958e7b766c3e840')      os.mkdir(os.path.join(folder, SAVE_DIRECTORY))      images = get_image_paths(folder)      pool = Pool()      pool.map(creat_thumbnail, images)      pool.close()      pool.join()

5.6 秒!

虽然只改动了几行代码,我们却明显提高了程序的执行速度。在生产环境中,我们可以为 CPU 密集型任务和 IO 密集型任务分别选择多进程和多线程库来进一步提高执行速度——这也是解决死锁问题的良方。此外,由于 map 函数并不支持手动线程管理,反而使得相关的 debug 工作也变得异常简单。

感谢各位的阅读,以上就是"Python代码便利并行的方法是什么"的内容了,经过本文的学习后,相信大家对Python代码便利并行的方法是什么这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是,小编将为大家推送更多相关知识点的文章,欢迎关注!

0