千家信息网

matlab中如何通过遗传算法优化BP神经网络

发表于:2025-02-09 作者:千家信息网编辑
千家信息网最后更新 2025年02月09日,这篇文章主要介绍"matlab中如何通过遗传算法优化BP神经网络"的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇"matlab中如何通过遗传算法优化BP神经网络"
千家信息网最后更新 2025年02月09日matlab中如何通过遗传算法优化BP神经网络

这篇文章主要介绍"matlab中如何通过遗传算法优化BP神经网络"的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇"matlab中如何通过遗传算法优化BP神经网络"文章能帮助大家解决问题。

%% 清空环境变量

clc


clear

%% 网络结构建立

%读取数据

load data input output


%节点个数

inputnum=2;

hiddennum=5;

outputnum=1;


%训练数据和预测数据

input_train=input(1:1900,:)';

input_test=input(1901:2000,:)';

output_train=output(1:1900)';

output_test=output(1901:2000)';


%选连样本输入输出数据归一化

[inputn,inputps]=mapminmax(input_train);

[outputn,outputps]=mapminmax(output_train);


%构建网络

net=newff(inputn,outputn,hiddennum);


%% 遗传算法参数初始化

maxgen=10; %进化代数,即迭代次数

sizepop=10; %种群规模

pcross=0.3; %交叉概率选择,0和1之间

pmutation=0.1; %变异概率选择,0和1之间


%节点总数

numsum=inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum;


lenchrom=ones(1,numsum);

bound=[-3*ones(numsum,1) 3*ones(numsum,1)]; %数据范围


%% 种群初始化

individuals=struct('fitness',zeros(1,sizepop), 'chrom',[]);

%将种群信息定义为一个结构体

avgfitness=[];

%每一代种群的平均适应度

bestfitness=[];

%每一代种群的最佳适应度

bestchrom=[];

%适应度最好的染色体

%初始化种群

for i=1:sizepop

%随机产生一个种群

individuals.chrom(i,:)=Code(lenchrom,bound);

%编码

x=individuals.chrom(i,:);

%计算适应度

individuals.fitness(i)=fun(x,inputnum,hiddennum,outputnum,net,inputn,outputn); %染色体的适应度

end


%找最好的染色体

[bestfitness, bestindex]=min(individuals.fitness);

bestchrom=individuals.chrom(bestindex,:); %最好的染色体

avgfitness=sum(individuals.fitness)/sizepop; %染色体的平均适应度

% 记录每一代进化中最好的适应度和平均适应度

trace=[avgfitness bestfitness];

%% 迭代求解最佳初始阀值和权值

% 进化开始

for i=1:maxgen

% 选择

individuals=Select(individuals,sizepop);

avgfitness=sum(individuals.fitness)/sizepop;

%交叉

individuals.chrom=Cross(pcross,lenchrom,individuals.chrom,sizepop,bound);

% 变异

individuals.chrom=Mutation(pmutation,lenchrom,individuals.chrom,sizepop,i,maxgen,bound);

% 计算适应度

for j=1:sizepop

x=individuals.chrom(j,:); %解码

individuals.fitness(j)=fun(x,inputnum,hiddennum,outputnum,net,inputn,outputn);

end

%找到最小和最大适应度的染色体及它们在种群中的位置

[newbestfitness,newbestindex]=min(individuals.fitness);

[worestfitness,worestindex]=max(individuals.fitness);

% 代替上一次进化中最好的染色体

if bestfitness>newbestfitness

bestfitness=newbestfitness;

bestchrom=individuals.chrom(newbestindex,:);

end

individuals.chrom(worestindex,:)=bestchrom;

individuals.fitness(worestindex)=bestfitness;

avgfitness=sum(individuals.fitness)/sizepop;

trace=[trace;avgfitness bestfitness]; %记录每一代进化中最好的适应度和平均适应度


end

%% 遗传算法结果分析

figure(1)

[r, c]=size(trace);

plot([1:r]',trace(:,2),'b--');

title(['适应度曲线 ' '终止代数=' num2str(maxgen)]);

xlabel('进化代数');ylabel('适应度');

legend('平均适应度','最佳适应度');

x=bestchrom;


%% 把最优初始阀值权值赋予网络预测

% %用遗传算法优化的BP网络进行值预测

w1=x(1:inputnum*hiddennum);

B1=x(inputnum*hiddennum+1:inputnum*hiddennum+hiddennum);

w2=x(inputnum*hiddennum+hiddennum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum);

B2=x(inputnum*hiddennum+hiddennum+hiddennum*outputnum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum);


net.iw{1,1}=reshape(w1,hiddennum,inputnum);

net.lw{2,1}=reshape(w2,outputnum,hiddennum);

net.b{1}=reshape(B1,hiddennum,1);

net.b{2}=B2;


%% BP网络训练

%网络进化参数

net.trainParam.epochs=100;

net.trainParam.lr=0.1;

%net.trainParam.goal=0.00001;


%网络训练

[net,per2]=train(net,inputn,outputn);

%% BP网络预测

%数据归一化

inputn_test=mapminmax('apply',input_test,inputps);

an=sim(net,inputn_test);

test_simu=mapminmax('reverse',an,outputps);

error=test_simu-output_test;

关于"matlab中如何通过遗传算法优化BP神经网络"的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识,可以关注行业资讯频道,小编每天都会为大家更新不同的知识点。

0