千家信息网

Python单元测试的技巧有哪些

发表于:2025-01-22 作者:千家信息网编辑
千家信息网最后更新 2025年01月22日,这篇文章主要介绍Python单元测试的技巧有哪些,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!1、requests项目单元测试状况requests的单元测试代码全部在 test
千家信息网最后更新 2025年01月22日Python单元测试的技巧有哪些

这篇文章主要介绍Python单元测试的技巧有哪些,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!

1、requests项目单元测试状况

requests的单元测试代码全部在 tests 目录,使用 pytest.ini 进行配置。测试除pytest外,还需要安装:

库名描述
httpbin一个使用flask实现的http服务,可以客户端定义http响应,主要用于测试http协议
pytest-httpbinpytest的插件,封装httpbin的实现
pytest-mockpytest的插件,提供mock
pytest-covpytest的插件,提供覆盖率

上述依赖 master 版本在requirement-dev文件中定义;2.24.0版本会在pipenv中定义。

测试用例使用make命令,子命令在Makefile中定义, 使用make ci运行所有单元测试结果如下:

$ make ci pytest tests --junitxml=report.xml ======================================================================================================= test session starts ======================================================================================================= platform linux -- Python 3.6.8, pytest-3.10.1, py-1.10.0, pluggy-0.13.1 rootdir: /home/work6/project/requests, inifile: pytest.ini plugins: mock-2.0.0, httpbin-1.0.0, cov-2.9.0 collected 552 items                                                                                                                                                                                                                 tests/test_help.py ...                                                                                                                                                                                                      [  0%] tests/test_hooks.py ...                                                                                                                                                                                                     [  1%] tests/test_lowlevel.py ...............                                                                                                                                                                                      [  3%] tests/test_packages.py ...                                                                                                                                                                                                  [  4%] tests/test_requests.py .................................................................................................................................................................................................... [ 39%] 127.0.0.1 - - [10/Aug/2021 08:41:53] "GET /stream/4 HTTP/1.1" 200 756 .127.0.0.1 - - [10/Aug/2021 08:41:53] "GET /stream/4 HTTP/1.1" 500 59 ---------------------------------------- Exception happened during processing of request from ('127.0.0.1', 46048) Traceback (most recent call last):   File "/usr/lib64/python3.6/wsgiref/handlers.py", line 138, in run     self.finish_response() x.........................................................................................                                                                                                                                 [ 56%] tests/test_structures.py ....................                                                                                                                                                                               [ 59%] tests/test_testserver.py ......s....                                                                                                                                                                                        [ 61%] tests/test_utils.py ..s................................................................................................................................................................................................ssss [ 98%] ssssss.....                                                                                                                                                                                                                 [100%]  ----------------------------------------------------------------------------------- generated xml file: /home/work6/project/requests/report.xml ----------------------------------------------------------------------------------- ======================================================================================= 539 passed, 12 skipped, 1 xfailed in 64.16 seconds ========================================================================================

可以看到requests在1分钟内,总共通过了539个测试用例,效果还是不错。使用 make coverage 查看单元测试覆盖率:

$ make coverage ----------- coverage: platform linux, python 3.6.8-final-0 ----------- Name                          Stmts   Miss  Cover ------------------------------------------------- requests/__init__.py             71     71     0% requests/__version__.py          10     10     0% requests/_internal_utils.py      16      5    69% requests/adapters.py            222     67    70% requests/api.py                  20     13    35% requests/auth.py                174     54    69% requests/certs.py                 4      4     0% requests/compat.py               47     47     0% requests/cookies.py             238    115    52% requests/exceptions.py           35     29    17% requests/help.py                 63     19    70% requests/hooks.py                15      4    73% requests/models.py              455    119    74% requests/packages.py             16     16     0% requests/sessions.py            283     67    76% requests/status_codes.py         15     15     0% requests/structures.py           40     19    52% requests/utils.py               465    170    63% ------------------------------------------------- TOTAL                          2189    844    61% Coverage XML written to file coverage.xml

结果显示requests项目总体覆盖率61%,每个模块的覆盖率也清晰可见。

单元测试覆盖率使用代码行数进行判断,Stmts显示模块的有效行数,Miss显示未执行到的行。如果生成html的报告,还可以定位到具体未覆盖到的行;pycharmcoverage也有类似功能。

tests下的文件及测试类如下表:

文件描述
compatpython2和python3兼容
conftestpytest配置
test_help,test_packages,test_hooks,test_structures简单测试类
utils.py工具函数
test_utils测试工具函数
test_requests测试requests
testserver\server模拟服务
test_testserver模拟服务测试
test_lowlevel使用模拟服务测试模拟网络测试

2、简单工具类如何测试

2.1 test_help 实现分析

先从最简单的test_help上手,测试类和被测试对象命名是对应的。先看看被测试的模块help.py。这个模块主要是2个函数 info_implementation:

import idna  def _implementation():     ...      def info():     ...     system_ssl = ssl.OPENSSL_VERSION_NUMBER     system_ssl_info = {         'version': '%x' % system_ssl if system_ssl is not None else ''     }     idna_info = {         'version': getattr(idna, '__version__', ''),     }     ...     return {         'platform': platform_info,         'implementation': implementation_info,         'system_ssl': system_ssl_info,         'using_pyopenssl': pyopenssl is not None,         'pyOpenSSL': pyopenssl_info,         'urllib3': urllib3_info,         'chardet': chardet_info,         'cryptography': cryptography_info,         'idna': idna_info,         'requests': {             'version': requests_version,         },     }

info提供系统环境的信息, _implementation是其内部实现,以下划线*_*开头。再看测试类test_help:

from requests.help import info  def test_system_ssl():     """Verify we're actually setting system_ssl when it should be available."""     assert info()['system_ssl']['version'] != ''  class VersionedPackage(object):     def __init__(self, version):         self.__version__ = version  def test_idna_without_version_attribute(mocker):     """Older versions of IDNA don't provide a __version__ attribute, verify     that if we have such a package, we don't blow up.     """     mocker.patch('requests.help.idna', new=None)     assert info()['idna'] == {'version': ''}  def test_idna_with_version_attribute(mocker):     """Verify we're actually setting idna version when it should be available."""     mocker.patch('requests.help.idna', new=VersionedPackage('2.6'))     assert info()['idna'] == {'version': '2.6'}

首先从头部的导入信息可以看到,仅仅对info函数进行测试,这个容易理解。info测试通过,自然覆盖到_implementation这个内部函数。这里可以得到单元测试的第1个技巧:仅对public的接口进行测试

test_idna_without_version_attributetest_idna_with_version_attribute均有一个mocker参数,这是pytest-mock提供的功能,会自动注入一个mock实现。使用这个mock对idna模块进行模拟

# 模拟空实现 mocker.patch('requests.help.idna', new=None) # 模拟版本2.6 mocker.patch('requests.help.idna', new=VersionedPackage('2.6'))

可能大家会比较奇怪,这里patch模拟的是 requests.help.idna , 而我们在help中导入的是 inda 模块。这是因为在requests.packages中对inda进行了模块名重定向:

for package in ('urllib3', 'idna', 'chardet'):     locals()[package] = __import__(package)     # This traversal is apparently necessary such that the identities are     # preserved (requests.packages.urllib3.* is urllib3.*)     for mod in list(sys.modules):         if mod == package or mod.startswith(package + '.'):             sys.modules['requests.packages.' + mod] = sys.modules[mod]

使用mocker后,idna的__version__信息就可以进行控制,这样info中的idna结果也就可以预期。那么可以得到第2个技巧:使用mock辅助单元测试

2.2 test_hooks 实现分析

我们继续查看hooks如何进行测试:

from requests import hooks  def hook(value):     return value[1:]  @pytest.mark.parametrize(     'hooks_list, result', (         (hook, 'ata'),         ([hook, lambda x: None, hook], 'ta'),     ) ) def test_hooks(hooks_list, result):     assert hooks.dispatch_hook('response', {'response': hooks_list}, 'Data') == result  def test_default_hooks():     assert hooks.default_hooks() == {'response': []}

hooks模块的2个接口default_hooksdispatch_hook都进行了测试。其中default_hooks是纯函数,无参数有返回值,这种函数最容易测试,仅仅检查返回值是否符合预期即可。dispatch_hook会复杂一些,还涉及对回调函数(hook函数)的调用:

def dispatch_hook(key, hooks, hook_data, **kwargs):     """Dispatches a hook dictionary on a given piece of data."""     hooks = hooks or {}     hooks = hooks.get(key)     if hooks:         # 判断钩子函数         if hasattr(hooks, '__call__'):             hooks = [hooks]         for hook in hooks:             _hook_data = hook(hook_data, **kwargs)             if _hook_data is not None:                 hook_data = _hook_data     return hook_data

pytest.mark.parametrize提供了2组参数进行测试。第一组参数hook和ata很简单,hook是一个函数,会对参数裁剪,去掉首位,ata是期望的返回值。test_hooksresponse的参数是Data,所以结果应该是ata。第二组参数中的第一个参数会复杂一些,变成了一个数组,首位还是hook函数,中间使用一个匿名函数,匿名函数没有返回值,这样覆盖到 if _hook_data is not None: 的旁路分支。执行过程如下:

  • hook函数裁剪Data首位,剩余ata

  • 匿名函数不对结果修改,剩余ata

  • hook函数继续裁剪ata首位,剩余ta

经过测试可以发现dispatch_hook的设计十分巧妙,使用pipeline模式,将所有的钩子串起来,这是和事件机制不一样的地方。细心的话,我们可以发现 if hooks: 并未进行旁路测试,这个不够严谨,有违我们的第3个技巧:

测试尽可能覆盖目标函数的所有分支

2.3 test_structures 实现分析

LookupDict的测试用例如下:

class TestLookupDict:      @pytest.fixture(autouse=True)     def setup(self):         """LookupDict instance with "bad_gateway" attribute."""         self.lookup_dict = LookupDict('test')         self.lookup_dict.bad_gateway = 502      def test_repr(self):         assert repr(self.lookup_dict) == ""      get_item_parameters = pytest.mark.parametrize(         'key, value', (             ('bad_gateway', 502),             ('not_a_key', None)         )     )      @get_item_parameters     def test_getitem(self, key, value):         assert self.lookup_dict[key] == value      @get_item_parameters     def test_get(self, key, value):         assert self.lookup_dict.get(key) == value

可以发现使用setup方法配合@pytest.fixture,给所有测试用例初始化了一个lookup_dict对象;同时pytest.mark.parametrize可以在不同的测试用例之间复用的,我们可以得到第4个技巧:

使用pytest.fixture复用被测试对象,使用pytest.mark.parametriz复用测试参数

通过TestLookupDicttest_getitemtest_get可以更直观的了解LookupDict的get和__getitem__方法的作用:

class LookupDict(dict):     ...     def __getitem__(self, key):         # We allow fall-through here, so values default to None         return self.__dict__.get(key, None)      def get(self, key, default=None):         return self.__dict__.get(key, default)
  • get自定义字典,使其可以使用 get 方法获取值

  • __getitem__自定义字典,使其可以使用 [] 符合获取值

CaseInsensitiveDict的测试用例在test_structurestest_requests中都有测试,前者主要是基础测试,后者偏向业务使用层面,我们可以看到这两种差异:

class TestCaseInsensitiveDict:# 类测试def test_repr(self):assert repr(self.case_insensitive_dict) == "{'Accept': 'application/json'}"def test_copy(self):copy = self.case_insensitive_dict.copy()assert copy is not self.case_insensitive_dictassert copy == self.case_insensitive_dictclass TestCaseInsensitiveDict:# 使用方法测试def test_delitem(self):cid = CaseInsensitiveDict()cid['Spam'] = 'someval'del cid['sPam']assert 'spam' not in cidassert len(cid) == 0def test_contains(self):cid = CaseInsensitiveDict()cid['Spam'] = 'someval'assert 'Spam' in cidassert 'spam' in cidassert 'SPAM' in cidassert 'sPam' in cidassert 'notspam' not in cid

借鉴上面的测试方法,不难得出第5个技巧:

可以从不同的层面对同一个对象进行单元测试

后面的test_lowleveltest_requests也应用了这种技巧

2.4 utils.py

utils中构建了一个可以写入env的生成器(由yield关键字提供),可以当上下文装饰器使用:

import contextlibimport os@contextlib.contextmanagerdef override_environ(**kwargs):save_env = dict(os.environ)for key, value in kwargs.items():if value is None:del os.environ[key]else:os.environ[key] = valuetry:yieldfinally:os.environ.clear()os.environ.update(save_env)

下面是使用方法示例:

# test_requests.pykwargs = {var: proxy}# 模拟控制proxy环境变量with override_environ(**kwargs):proxies = session.rebuild_proxies(prep, {})def rebuild_proxies(self, prepared_request, proxies):bypass_proxy = should_bypass_proxies(url, no_proxy=no_proxy)def should_bypass_proxies(url, no_proxy):...get_proxy = lambda k: os.environ.get(k) or os.environ.get(k.upper())...

得出第6个技巧:涉及环境变量的地方,可以使用上下文装饰器进行模拟多种环境变量

2.5 utils测试用例

utils的测试用例较多,我们选择部分进行分析。先看to_key_val_list函数:

# 对象转列表def to_key_val_list(value):if value is None:return Noneif isinstance(value, (str, bytes, bool, int)):raise ValueError('cannot encode objects that are not 2-tuples')if isinstance(value, Mapping):value = value.items()return list(value)

对应的测试用例TestToKeyValList:

class TestToKeyValList:@pytest.mark.parametrize('value, expected', (([('key', 'val')], [('key', 'val')]),((('key', 'val'), ), [('key', 'val')]),({'key': 'val'}, [('key', 'val')]),(None, None)))def test_valid(self, value, expected):assert to_key_val_list(value) == expecteddef test_invalid(self):with pytest.raises(ValueError):to_key_val_list('string')

重点是test_invalid中使用pytest.raise对异常的处理:

第7个技巧:使用pytest.raises对异常进行捕获处理

TestSuperLen介绍了几种进行IO模拟测试的方法:

class TestSuperLen:@pytest.mark.parametrize('stream, value', ((StringIO.StringIO, 'Test'),(BytesIO, b'Test'),pytest.param(cStringIO, 'Test',marks=pytest.mark.skipif('cStringIO is None')),))def test_io_streams(self, stream, value):"""Ensures that we properly deal with different kinds of IO streams."""assert super_len(stream()) == 0assert super_len(stream(value)) == 4def test_super_len_correctly_calculates_len_of_partially_read_file(self):"""Ensure that we handle partially consumed file like objects."""s = StringIO.StringIO()s.write('foobarbogus')assert super_len(s) == 0@pytest.mark.parametrize('mode, warnings_num', (('r', 1),('rb', 0),))def test_file(self, tmpdir, mode, warnings_num, recwarn):file_obj = tmpdir.join('test.txt')file_obj.write('Test')with file_obj.open(mode) as fd:assert super_len(fd) == 4assert len(recwarn) == warnings_numdef test_super_len_with_tell(self):foo = StringIO.StringIO('12345')assert super_len(foo) == 5foo.read(2)assert super_len(foo) == 3def test_super_len_with_fileno(self):with open(__file__, 'rb') as f:length = super_len(f)file_data = f.read()assert length == len(file_data)

使用StringIO来模拟IO操作,可以配置各种IO的测试。当然也可以使用BytesIO/cStringIO, 不过单元测试用例一般不关注性能,StringIO简单够用。

pytest提供tmpdirfixture,可以进行文件读写操作测试

可以使用__file__来进行文件的只读测试,__file__表示当前文件,不会产生副作用。

第8个技巧:使用IO模拟配合进行单元测试

2.6 request-api如何测试

requests的测试需要httpbinpytest-httpbin,前者会启动一个本地服务,后者会安装一个pytest插件,测试用例中可以得到httpbinfixture,用来操作这个服务的URL。

功能
TestRequestsrequests业务测试
TestCaseInsensitiveDict大小写不敏感的字典测试
TestMorselToCookieExpirescookie过期测试
TestMorselToCookieMaxAgecookie大小
TestTimeout响应超时的测试
TestPreparingURLsURL预处理
...一些零碎的测试用例

坦率的讲:这个测试用例内容庞大,达到2500行。看起来是针对各种业务的零散case,我并没有完全理顺其组织逻辑。我选择一些感兴趣的业务进行介绍, 先看TimeOut的测试:

TARPIT = 'http://10.255.255.1'class TestTimeout:def test_stream_timeout(self, httpbin):try:requests.get(httpbin('delay/10'), timeout=2.0)except requests.exceptions.Timeout as e:assert 'Read timed out' in e.args[0].args[0]@pytest.mark.parametrize('timeout', ((0.1, None),Urllib3Timeout(connect=0.1, read=None)))def test_connect_timeout(self, timeout):try:requests.get(TARPIT, timeout=timeout)pytest.fail('The connect() request should time out.')except ConnectTimeout as e:assert isinstance(e, ConnectionError)assert isinstance(e, Timeout)

test_stream_timeout利用httpbin创建了一个延迟10s响应的接口,然后请求本身设置成2s,这样可以收到一个本地timeout的错误。test_connect_timeout则是访问一个不存在的服务,捕获连接超时的错误。

TestRequests都是对requests的业务进程测试,可以看到至少是2种:

class TestRequests:def test_basic_building(self):req = requests.Request()req.url = 'http://kennethreitz.org/'req.data = {'life': '42'}pr = req.prepare()assert pr.url == req.urlassert pr.body == 'life=42'def test_path_is_not_double_encoded(self):request = requests.Request('GET', "http://0.0.0.0/get/test case").prepare()assert request.path_url == '/get/test%20case...def test_HTTP_200_OK_GET_ALTERNATIVE(self, httpbin):r = requests.Request('GET', httpbin('get'))s = requests.Session()s.proxies = getproxies()r = s.send(r.prepare())assert r.status_code == 200ef test_set_cookie_on_301(self, httpbin):s = requests.session()url = httpbin('cookies/set?foo=bar')s.get(url)assert s.cookies['foo'] == 'bar'
  • 对url进行校验,只需要对request进行prepare,这种情况下,请求并未发送,少了网络传输,测试用例会更迅速

  • 需要响应数据的情况,需要使用httbin构建真实的请求-响应数据

3、底层API测试

testserver构建一个简单的基于线程的tcp服务,这个tcp服务具有__enter____exit__方法,还可以当一个上下文环境使用。

class TestTestServer:def test_basic(self):"""messages are sent and received properly"""question = b"success?"answer = b"yeah, success"def handler(sock):text = sock.recv(1000)assert text == questionsock.sendall(answer)with Server(handler) as (host, port):sock = socket.socket()sock.connect((host, port))sock.sendall(question)text = sock.recv(1000)assert text == answersock.close()def test_text_response(self):"""the text_response_server sends the given text"""server = Server.text_response_server("HTTP/1.1 200 OK\r\n" +"Content-Length: 6\r\n" +"\r\nroflol")with server as (host, port):r = requests.get('http://{}:{}'.format(host, port))assert r.status_code == 200assert r.text == u'roflol'assert r.headers['Content-Length'] == '6'

test_basic方法对Server进行基础校验,确保收发双方可以正确的发送和接收数据。先是客户端的sock发送question,然后服务端在handler中判断收到的数据是question,确认后返回answer,最后客户端再确认可以正确收到answer响应。test_text_response方法则不完整的测试了http协议。按照http协议的规范发送了http请求,Server.text_response_server会回显请求。下面是模拟浏览器的锚点定位不会经过网络传输的testcase:

def test_fragment_not_sent_with_request():"""Verify that the fragment portion of a URI isn't sent to the server."""def response_handler(sock):req = consume_socket_content(sock, timeout=0.5)sock.send(b'HTTP/1.1 200 OK\r\n'b'Content-Length: '+bytes(len(req))+b'\r\n'b'\r\n'+req)close_server = threading.Event()server = Server(response_handler, wait_to_close_event=close_server)with server as (host, port):url = 'http://{}:{}/path/to/thing/#view=edit&token=hunter2'.format(host, port)r = requests.get(url)raw_request = r.contentassert r.status_code == 200headers, body = raw_request.split(b'\r\n\r\n', 1)status_line, headers = headers.split(b'\r\n', 1)assert status_line == b'GET /path/to/thing/ HTTP/1.1'for frag in (b'view', b'edit', b'token', b'hunter2'):assert frag not in headersassert frag not in bodyclose_server.set()

可以看到请求的path/path/to/thing/#view=edit&token=hunter2,其中 # 后面的部分是本地锚点,不应该进行网络传输。上面测试用例中,对接收到的响应进行判断,鉴别响应头和响应body中不包含这些关键字。

结合requests的两个层面的测试,我们可以得出第9个技巧:

构造模拟服务配合测试

以上是"Python单元测试的技巧有哪些"这篇文章的所有内容,感谢各位的阅读!希望分享的内容对大家有帮助,更多相关知识,欢迎关注行业资讯频道!

0