千家信息网

Python机器中如何使用Pyecharts制作可视化大屏

发表于:2025-01-17 作者:千家信息网编辑
千家信息网最后更新 2025年01月17日,这篇文章主要讲解了"Python机器中如何使用Pyecharts制作可视化大屏",文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习"Python机器中如何使用
千家信息网最后更新 2025年01月17日Python机器中如何使用Pyecharts制作可视化大屏

这篇文章主要讲解了"Python机器中如何使用Pyecharts制作可视化大屏",文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习"Python机器中如何使用Pyecharts制作可视化大屏"吧!

目录
  • 前言

  • Pyecharts可视化

  • Map世界地图

  • 柱状图、饼图

  • Pyecharts组合图表

前言

ECharts是由百度开源的基于JS的商业级数据图表库,有很多现成的图表类型和实例,而Pyecharts则是为了方便我们使用Python实现ECharts的绘图。使用Pyecharts制作可视化大屏,可以分为两步:

1、使用分别Pyecharts分别制作各类图形;

2、使用Pyecharts中的组合图表功能,将所有图片拼接在一张html文件中进行展示。

Pyecharts可视化

本文缩减了图表,只选用2020东京奥运会各国金牌分布图、2020东京奥运会奖牌榜详情、2020东京奥运会中国各项目获奖详情。

这类图表都很简单,参照官方文档直接复制示例就可以学习。图表配色都使用的Pyecharts默认颜色,大家实际使用时尽量形成自己的风格。

爬取数据

import requestsimport pandas as pdfrom pprint import pprinturl = 'https://app-sc.miguvideo.com/vms-livedata/olympic-medal/total-table/15/110000004609'data1 = requests.get(url).json()pprint(data1)

Map世界地图

Pyecharts绘制世界地图时,名称必须是英文。所以我们在前文中引入了国家名称中英文对照表,左连接形成了df1:

df1 = pd.DataFrame()for info in data1['body']['allMedalData']:    name = info['countryName']    name_id = info['countryId']    rank = info['rank']    gold = info['goldMedalNum']    silver = info['silverMedalNum']    bronze = info['bronzeMedalNum']    total = info['totalMedalNum']    # 组织数据    orangized_data = [[name,name_id,rank,gold,silver,bronze,total]]    # 然后追加df    df1 = df1.append(orangized_data)df1.columns = ['名称', 'ID', '排名', '金牌', '银牌', '铜牌', '奖牌总数']df1

url = 'https://app-sc.miguvideo.com/vms-livedata/olympic-medal/detail-total/15/110000004609'data2 = requests.get(url).json()pprint(data2)
df2 = pd.DataFrame()for info in data2['body']['medalTableDetail']:    english_name = info['countryName']    name_id = info['countryId']    award_time = info['awardTime']    item_name = info['bigItemName']    sports_name = info['sportsName']    medal_type = info['medalType']    # 组织数据    orangized_data = [[english_name,name_id,award_time,item_name,sports_name,medal_type]]    # 然后追加df    df2 = df2.append(orangized_data)df2.columns = ['英文缩写', 'ID', '获奖时间', '项目名', '运动员', '金牌类型']df2

数据预处理

with open("国家名中英文对照表.txt","r",encoding="utf-8") as f:    x = f.read()df3 = pd.DataFrame()for i in x.split("\n"):    x = i.split(":")[0].strip()    y = i.split(":")[1].strip()    orangined_data = [[x,y]]    df3 = df3.append(orangined_data)df3.columns = ["名称","英文名称"]df3.to_excel("国家名中英文对照表.xlsx",index=None)
df4 = pd.merge(df1,df3,on="名称",how="left")df4.head(10)

df5 = df2
df6 = pd.merge(df4,df5,on="ID",how="left")df6.head(10)

df6

x = {"获奖名次":["金牌","银牌","铜牌"],"金牌类型":[1,2,3]}df7 = pd.DataFrame(x)df7

df8 = pd.merge(df6,df7,on="金牌类型",how="left")df8.head(10)

df4.head(10)

Pyecharts可视化

单独提取英文名称和奖牌总数两列数据,用来可视化。

data_list=[[i,j] for i,j in zip(df4['英文名称'],df4['奖牌总数'])]data_list[:5]

数据准备好了,开始利用pyecharts绘制世界地图。

from pyecharts import options as optsfrom pyecharts.charts import Mapc = (    Map()    .add("", data_list, "world",          is_map_symbol_show=False,    )    .set_series_opts(label_opts=opts.LabelOpts(is_show=False))    .set_global_opts(        title_opts=opts.TitleOpts(title="2020东京奥运会各国总奖牌分布图"),        visualmap_opts=opts.VisualMapOpts(max_=100)    ))c.render_notebook()

非常简单

金牌总数

data_list1=[[i,j] for i,j in zip(df4['英文名称'],df4['金牌'])]data_list1[:5]
from pyecharts import options as optsfrom pyecharts.charts import Mapc = (    Map()    .add("", data_list1, "world",         is_map_symbol_show=False,         )    .set_series_opts(label_opts=opts.LabelOpts(is_show=False))    .set_global_opts(        title_opts=opts.TitleOpts(title="2020东京奥运会各国金牌分布图"),        visualmap_opts=opts.VisualMapOpts(max_=100)    ))c.render_notebook()

银牌总数

data_list2=[[i,j] for i,j in zip(df4['英文名称'],df4['银牌'])]data_list2[:5]
from pyecharts import options as optsfrom pyecharts.charts import Mapc = (    Map()    .add("", data_list2, "world",         is_map_symbol_show=False,         )    .set_series_opts(label_opts=opts.LabelOpts(is_show=False))    .set_global_opts(        title_opts=opts.TitleOpts(title="2020东京奥运会各国银牌分布图"),        visualmap_opts=opts.VisualMapOpts(max_=100)    ))c.render_notebook()

柱状图、饼图

柱状图(Bar)

from pyecharts import options as optsfrom pyecharts.charts import Barc = (    Bar()    .add_xaxis(df4['名称'].head(25).tolist())    .add_yaxis("金牌", df4['金牌'].head(25).tolist(), stack="stack1")    .add_yaxis("银牌", df4['银牌'].head(25).tolist(), stack="stack1")    .add_yaxis("铜牌", df4['铜牌'].head(25).tolist(), stack="stack1")    .set_series_opts(label_opts=opts.LabelOpts(is_show=True, position="inside", font_size=12, color='#FFFFFF'))    .set_global_opts(title_opts=opts.TitleOpts(title="2020东京奥运会奖牌榜详情"),                     xaxis_opts=opts.AxisOpts(type_='category',                                              axislabel_opts=opts.LabelOpts(                                                  rotate=45),                                              )))c.render_notebook()

饼图(Pie)

from pyecharts import options as optsfrom pyecharts.charts import Piec = (    Pie()    .add("", [['跳水', 12], ['射击', 11], ['举重', 8], ['竞技体操', 8], ['乒乓球', 7], ['游泳', 6], ['羽毛球', 6], ['田径', 5], ['静水皮划艇', 3], ['蹦床体操', 3], ['自由式摔跤', 3], ['赛艇', 3], ['空手道', 2], ['拳击', 2], ['帆船', 2], ['花样游泳', 2], ['跆拳道', 1], ['场地自行车赛', 1], ['古典式摔跤', 1], ['击剑', 1], ['三人篮球', 1]],         center=["50%", "60%"],)    .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}")))c.render_notebook()

这样需要用到的三张图表就绘制好了。

Pyecharts组合图表

Pyecharts进行可视化大屏第二步就是组合图表,大致可分为四类:

  • Grid:并行多图

  • Page:顺序多图

  • Tab:选项卡多图

  • Timeline:时间线轮播多图

官方文档:Pyecharts

这里用Page(顺序多图)居多,在组合图表之前,还要先把前面的图表绘制代码改为函数。

def map_world() -> Map:    c = (        Map(init_opts=opts.InitOpts(chart_id=2, bg_color='#ADD8E6'))        .add("", data_list, "world",             is_map_symbol_show=False,             )        .set_series_opts(label_opts=opts.LabelOpts(is_show=False))        .set_global_opts(            title_opts=opts.TitleOpts(title="2020东京奥运会各国金牌分布图"),            visualmap_opts=opts.VisualMapOpts(max_=100)        )    )    return c

顺便还在其中增加了背景颜色bg_color、图表IDchart_id,后者用于多图表时定位区分。背景颜色的话,我选择了淡蓝色#ADD8E6。后续图片的布局是根据图表ID的对应关系进行布局,所以每张图都要分别设置其id。

接着使用page = Page(layout= Page.DraggablePageLayout)模式对图片进行展示,这一步是为了调整布局。

page = Page(layout=Page.DraggablePageLayout, page_title="2020东京奥运会奖牌榜")# 在页面中添加图表page.add(    title(),    map_world(),    bar_medals(),    pie_china(),)page.render('test.html')

调用绘制函数后生成一个 test.html 文件。

打开后可以其中的图片进行拖拽,来实现自定义布局。

对图片布局完毕后,要记得点击左上角"save config"对布局文件进行保存。

点击后,本地会生成一个chart_config.json的文件,这其中包含了每个图表ID对应的布局位置。

最后,调用保存好的布局文件,重新生成html。

运行下面这行代码。

page.save_resize_html('test.html', cfg_file='chart_config.json', dest='奥运.html')

其中test.html 为生成的所有图表的文件、chart_config.json 为下载的布局文件、奥运.html 为布局好的的仪表盘文件、打开仪表奥运.html:

这样就实现了一次数据可视化--大屏展示。

但还有还有很多不足之处,比如若图表配色没有特殊去做调整。

整张大屏只是一个静态的展示,而非具有商业场景的数据仪表盘。

真正的数据大屏往往更喜欢用BI软件生成,能够实现图、表、切片器之间交叉筛选,希望以后有机会能用Python使用制作出来。

感谢各位的阅读,以上就是"Python机器中如何使用Pyecharts制作可视化大屏"的内容了,经过本文的学习后,相信大家对Python机器中如何使用Pyecharts制作可视化大屏这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是,小编将为大家推送更多相关知识点的文章,欢迎关注!

0