Android的DiskLruCache磁盘缓存机制原理是怎样的
Android的DiskLruCache磁盘缓存机制原理是怎样的,很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。
一、为什么用DiskLruCache
1、LruCache和DiskLruCache
LruCache
和DiskLruCache
两者都是利用到LRU算法,通过LRU算法对缓存进行管理,以最近最少使用作为管理的依据,删除最近最少使用的数据,保留最近最常用的数据;
LruCache
运用于内存缓存,而DiskLruCache
是存储设备缓存;
2、为何使用DiskLruCache
离线数据存在的意义,当无网络或者是网络状况不好时,APP依然具备部分功能是一种很好的用户体验;
假设网易新闻这类新闻客户端,数据完全存储在缓存中而不使用DiskLruCache技术存储,那么当客户端被销毁,缓存被释放,意味着再次打开APP将是一片空白;
另外DiskLruCache
技术也可为app"离线阅读"这一功能做技术支持;
DiskLruCache
的存储路径是可以自定义的,不过也可以是默认的存储路径,而默认的存储路径一般是这样的:/sdcard/Android/data/包名/cache,包名是指APP的包名。我们可以在手机上打开,浏览这一路径;
二、DiskLruCache使用
1、添加依赖
// add dependence implementation 'com.jakewharton:disklrucache:2.0.2'
2、创建DiskLruCache对象
/* * directory - 缓存目录 * appVersion - 缓存版本 * valueCount - 每个key对应value的个数 * maxSize - 缓存大小的上限 */ DiskLruCache diskLruCache = DiskLruCache.open(directory, 1, 1, 1024 * 1024 * 10);
3、添加 / 获取 缓存(一对一)
/** * 添加一条缓存,一个key对应一个value */ public void addDiskCache(String key, String value) throws IOException { File cacheDir = context.getCacheDir(); DiskLruCache diskLruCache = DiskLruCache.open(cacheDir, 1, 1, 1024 * 1024 * 10); DiskLruCache.Editor editor = diskLruCache.edit(key); // index与valueCount对应,分别为0,1,2...valueCount-1 editor.newOutputStream(0).write(value.getBytes()); editor.commit(); diskLruCache.close(); } /** * 获取一条缓存,一个key对应一个value */ public void getDiskCache(String key) throws IOException { File directory = context.getCacheDir(); DiskLruCache diskLruCache = DiskLruCache.open(directory, 1, 1, 1024 * 1024 * 10); String value = diskLruCache.get(key).getString(0); diskLruCache.close(); }
4、添加 / 获取 缓存(一对多)
/** * 添加一条缓存,1个key对应2个value */ public void addDiskCache(String key, String value1, String value2) throws IOException { File directory = context.getCacheDir(); DiskLruCache diskLruCache = DiskLruCache.open(directory, 1, 2, 1024 * 1024 * 10); DiskLruCache.Editor editor = diskLruCache.edit(key); editor.newOutputStream(0).write(value1.getBytes()); editor.newOutputStream(1).write(value2.getBytes()); editor.commit(); diskLruCache.close(); } /** * 添加一条缓存,1个key对应2个value */ public void getDiskCache(String key) throws IOException { File directory = context.getCacheDir(); DiskLruCache diskLruCache = DiskLruCache.open(directory, 1, 2, 1024); DiskLruCache.Snapshot snapshot = diskLruCache.get(key); String value1 = snapshot.getString(0); String value2 = snapshot.getString(1); diskLruCache.close(); }
三、源码分析
1、open()
DiskLruCache
的构造方法是private
修饰,这也就是告诉我们,不能通过new DiskLruCache
来获取实例,构造方法如下:
private DiskLruCache(File directory, int appVersion, int valueCount, long maxSize) { this.directory = directory; this.appVersion = appVersion; this.journalFile = new File(directory, JOURNAL_FILE); this.journalFileTmp = new File(directory, JOURNAL_FILE_TEMP); this.journalFileBackup = new File(directory, JOURNAL_FILE_BACKUP); this.valueCount = valueCount; this.maxSize = maxSize; }
但是提供了open()方法,供我们获取DiskLruCache的实例,open方法如下:
/** * Opens the cache in {@code directory}, creating a cache if none exists * there. * * @param directory a writable directory * @param valueCount the number of values per cache entry. Must be positive. * @param maxSize the maximum number of bytes this cache should use to store * @throws IOException if reading or writing the cache directory fails */ public static DiskLruCache open(File directory, int appVersion, int valueCount, long maxSize) throws IOException { if (maxSize <= 0) { throw new IllegalArgumentException("maxSize <= 0"); } if (valueCount <= 0) { throw new IllegalArgumentException("valueCount <= 0"); } // If a bkp file exists, use it instead. //看备份文件是否存在 File backupFile = new File(directory, JOURNAL_FILE_BACKUP); //如果备份文件存在,并且日志文件也存在,就把备份文件删除 //如果备份文件存在,日志文件不存在,就把备份文件重命名为日志文件 if (backupFile.exists()) { File journalFile = new File(directory, JOURNAL_FILE); // If journal file also exists just delete backup file. // if (journalFile.exists()) { backupFile.delete(); } else { renameTo(backupFile, journalFile, false); } } // Prefer to pick up where we left off. //初始化DiskLruCache,包括,大小,版本,路径,key对应多少value DiskLruCache cache = new DiskLruCache(directory, appVersion, valueCount, maxSize); //如果日志文件存在,就开始赌文件信息,并返回 //主要就是构建entry列表 if (cache.journalFile.exists()) { try { cache.readJournal(); cache.processJournal(); return cache; } catch (IOException journalIsCorrupt) { System.out .println("DiskLruCache " + directory + " is corrupt: " + journalIsCorrupt.getMessage() + ", removing"); cache.delete(); } } //不存在就新建一个 // Create a new empty cache. directory.mkdirs(); cache = new DiskLruCache(directory, appVersion, valueCount, maxSize); cache.rebuildJournal(); return cache; } open函数:如果日志文件存在,直接去构建entry列表;如果不存在,就构建日志文件;
2、rebuildJournal()
构建文件: //这个就是我们可以直接在disk里面看到的journal文件 主要就是对他的操作 private final File journalFile; //journal文件的temp 缓存文件,一般都是先构建这个缓存文件,等待构建完成以后将这个缓存文件重新命名为journal private final File journalFileTmp; /** * Creates a new journal that omits redundant information. This replaces the * current journal if it exists. */ private synchronized void rebuildJournal() throws IOException { if (journalWriter != null) { journalWriter.close(); } //指向journalFileTmp这个日志文件的缓存 Writer writer = new BufferedWriter( new OutputStreamWriter(new FileOutputStream(journalFileTmp), Util.US_ASCII)); try { writer.write(MAGIC); writer.write("\n"); writer.write(VERSION_1); writer.write("\n"); writer.write(Integer.toString(appVersion)); writer.write("\n"); writer.write(Integer.toString(valueCount)); writer.write("\n"); writer.write("\n"); for (Entry entry : lruEntries.values()) { if (entry.currentEditor != null) { writer.write(DIRTY + ' ' + entry.key + '\n'); } else { writer.write(CLEAN + ' ' + entry.key + entry.getLengths() + '\n'); } } } finally { writer.close(); } if (journalFile.exists()) { renameTo(journalFile, journalFileBackup, true); } //所以这个地方 构建日志文件的流程主要就是先构建出日志文件的缓存文件,如果缓存构建成功 那就直接重命名这个缓存文件,这样做好处在哪里? renameTo(journalFileTmp, journalFile, false); journalFileBackup.delete(); //这里也是把写入日志文件的writer初始化 journalWriter = new BufferedWriter( new OutputStreamWriter(new FileOutputStream(journalFile, true), Util.US_ASCII)); }
再来看当日志文件存在的时候,做了什么
3、readJournal()
private void readJournal() throws IOException { StrictLineReader reader = new StrictLineReader(new FileInputStream(journalFile), Util.US_ASCII); try { //读日志文件的头信息 String magic = reader.readLine(); String version = reader.readLine(); String appVersionString = reader.readLine(); String valueCountString = reader.readLine(); String blank = reader.readLine(); if (!MAGIC.equals(magic) || !VERSION_1.equals(version) || !Integer.toString(appVersion).equals(appVersionString) || !Integer.toString(valueCount).equals(valueCountString) || !"".equals(blank)) { throw new IOException("unexpected journal header: [" + magic + ", " + version + ", " + valueCountString + ", " + blank + "]"); } //这里开始,就开始读取日志信息 int lineCount = 0; while (true) { try { //构建LruEntries entry列表 readJournalLine(reader.readLine()); lineCount++; } catch (EOFException endOfJournal) { break; } } redundantOpCount = lineCount - lruEntries.size(); // If we ended on a truncated line, rebuild the journal before appending to it. if (reader.hasUnterminatedLine()) { rebuildJournal(); } else { //初始化写入文件的writer journalWriter = new BufferedWriter(new OutputStreamWriter( new FileOutputStream(journalFile, true), Util.US_ASCII)); } } finally { Util.closeQuietly(reader); } }
然后看下这个函数里面的几个主要变量:
//每个entry对应的缓存文件的格式 一般为1,也就是一个key,对应几个缓存,一般设为1,key-value一一对应的关系 private final int valueCount; private long size = 0; //这个是专门用于写入日志文件的writer private Writer journalWriter; //这个集合应该不陌生了, private final LinkedHashMaplruEntries = new LinkedHashMap (0, 0.75f, true); //这个值大于一定数目时 就会触发对journal文件的清理了 private int redundantOpCount;
下面就看下entry这个实体类的内部结构
private final class Entry { private final String key; /** * Lengths of this entry's files. * 这个entry中 每个文件的长度,这个数组的长度为valueCount 一般都是1 */ private final long[] lengths; /** * True if this entry has ever been published. * 曾经被发布过 那他的值就是true */ private boolean readable; /** * The ongoing edit or null if this entry is not being edited. * 这个entry对应的editor */ private Editor currentEditor; @Override public String toString() { return "Entry{" + "key='" + key + '\'' + ", lengths=" + Arrays.toString(lengths) + ", readable=" + readable + ", currentEditor=" + currentEditor + ", sequenceNumber=" + sequenceNumber + '}'; } /** * The sequence number of the most recently committed edit to this entry. * 最近编辑他的序列号 */ private long sequenceNumber; private Entry(String key) { this.key = key; this.lengths = new long[valueCount]; } public String getLengths() throws IOException { StringBuilder result = new StringBuilder(); for (long size : lengths) { result.append(' ').append(size); } return result.toString(); } /** * Set lengths using decimal numbers like "10123". */ private void setLengths(String[] strings) throws IOException { if (strings.length != valueCount) { throw invalidLengths(strings); } try { for (int i = 0; i < strings.length; i++) { lengths[i] = Long.parseLong(strings[i]); } } catch (NumberFormatException e) { throw invalidLengths(strings); } } private IOException invalidLengths(String[] strings) throws IOException { throw new IOException("unexpected journal line: " + java.util.Arrays.toString(strings)); } //臨時文件創建成功了以後 就會重命名為正式文件了 public File getCleanFile(int i) { Log.v("getCleanFile","getCleanFile path=="+new File(directory, key + "." + i).getAbsolutePath()); return new File(directory, key + "." + i); } //tmp开头的都是临时文件 public File getDirtyFile(int i) { Log.v("getDirtyFile","getDirtyFile path=="+new File(directory, key + "." + i + ".tmp").getAbsolutePath()); return new File(directory, key + "." + i + ".tmp"); } }
DiskLruCache
的open
函数的主要流程就基本走完了;
4、get()
/** * Returns a snapshot of the entry named {@code key}, or null if it doesn't * exist is not currently readable. If a value is returned, it is moved to * the head of the LRU queue. * 通过key获取对应的snapshot */ public synchronized Snapshot get(String key) throws IOException { checkNotClosed(); validateKey(key); Entry entry = lruEntries.get(key); if (entry == null) { return null; } if (!entry.readable) { return null; } // Open all streams eagerly to guarantee that we see a single published // snapshot. If we opened streams lazily then the streams could come // from different edits. InputStream[] ins = new InputStream[valueCount]; try { for (int i = 0; i < valueCount; i++) { ins[i] = new FileInputStream(entry.getCleanFile(i)); } } catch (FileNotFoundException e) { // A file must have been deleted manually! for (int i = 0; i < valueCount; i++) { if (ins[i] != null) { Util.closeQuietly(ins[i]); } else { break; } } return null; } redundantOpCount++; //在取得需要的文件以后 记得在日志文件里增加一条记录 并检查是否需要重新构建日志文件 journalWriter.append(READ + ' ' + key + '\n'); if (journalRebuildRequired()) { executorService.submit(cleanupCallable); } return new Snapshot(key, entry.sequenceNumber, ins, entry.lengths); }
5、validateKey
private void validateKey(String key) { Matcher matcher = LEGAL_KEY_PATTERN.matcher(key); if (!matcher.matches()) { throw new IllegalArgumentException("keys must match regex " + STRING_KEY_PATTERN + ": \"" + key + "\""); } }
这里是对存储entry
的map
的key做了正则验证,所以key一定要用md5
加密,因为有些特殊字符验证不能通过;
然后看这句代码对应的:
if (journalRebuildRequired()) { executorService.submit(cleanupCallable); }
对应的回调函数是:
/** This cache uses a single background thread to evict entries. */ final ThreadPoolExecutor executorService = new ThreadPoolExecutor(0, 1, 60L, TimeUnit.SECONDS, new LinkedBlockingQueue()); private final Callable cleanupCallable = new Callable () { public Void call() throws Exception { synchronized (DiskLruCache.this) { if (journalWriter == null) { return null; // Closed. } trimToSize(); if (journalRebuildRequired()) { rebuildJournal(); redundantOpCount = 0; } } return null; } };
其中再来看看trimTOSize()
的状态
6、trimTOSize()
private void trimToSize() throws IOException { while (size > maxSize) { Map.EntrytoEvict = lruEntries.entrySet().iterator().next(); remove(toEvict.getKey()); } }
就是检测总缓存是否超过了限制数量,
再来看journalRebuildRequired
函数
7、journalRebuildRequired()
/** * We only rebuild the journal when it will halve the size of the journal * and eliminate at least 2000 ops. */ private boolean journalRebuildRequired() { final int redundantOpCompactThreshold = 2000; return redundantOpCount >= redundantOpCompactThreshold // && redundantOpCount >= lruEntries.size(); }
就是校验redundantOpCount
是否超出了范围,如果是,就重构日志文件;
最后看get
函数的返回值 new Snapshot()
/** A snapshot of the values for an entry. */ //这个类持有该entry中每个文件的inputStream 通过这个inputStream 可以读取他的内容 public final class Snapshot implements Closeable { private final String key; private final long sequenceNumber; private final InputStream[] ins; private final long[] lengths; private Snapshot(String key, long sequenceNumber, InputStream[] ins, long[] lengths) { this.key = key; this.sequenceNumber = sequenceNumber; this.ins = ins; this.lengths = lengths; } /** * Returns an editor for this snapshot's entry, or null if either the * entry has changed since this snapshot was created or if another edit * is in progress. */ public Editor edit() throws IOException { return DiskLruCache.this.edit(key, sequenceNumber); } /** Returns the unbuffered stream with the value for {@code index}. */ public InputStream getInputStream(int index) { return ins[index]; } /** Returns the string value for {@code index}. */ public String getString(int index) throws IOException { return inputStreamToString(getInputStream(index)); } /** Returns the byte length of the value for {@code index}. */ public long getLength(int index) { return lengths[index]; } public void close() { for (InputStream in : ins) { Util.closeQuietly(in); } } }
到这里就明白了get最终返回的其实就是entry
根据key 来取的snapshot
对象,这个对象直接把inputStream
暴露给外面;
8、save的过程
public Editor edit(String key) throws IOException { return edit(key, ANY_SEQUENCE_NUMBER); } //根据传进去的key 创建一个entry 并且将这个key加入到entry的那个map里 然后创建一个对应的editor //同时在日志文件里加入一条对该key的dirty记录 private synchronized Editor edit(String key, long expectedSequenceNumber) throws IOException { //因为这里涉及到写文件 所以要先校验一下写日志文件的writer 是否被正确的初始化 checkNotClosed(); //这个地方是校验 我们的key的,通常来说 假设我们要用这个缓存来存一张图片的话,我们的key 通常是用这个图片的 //网络地址 进行md5加密,而对这个key的格式在这里是有要求的 所以这一步就是验证key是否符合规范 validateKey(key); Entry entry = lruEntries.get(key); if (expectedSequenceNumber != ANY_SEQUENCE_NUMBER && (entry == null || entry.sequenceNumber != expectedSequenceNumber)) { return null; // Snapshot is stale. } if (entry == null) { entry = new Entry(key); lruEntries.put(key, entry); } else if (entry.currentEditor != null) { return null; // Another edit is in progress. } Editor editor = new Editor(entry); entry.currentEditor = editor; // Flush the journal before creating files to prevent file leaks. journalWriter.write(DIRTY + ' ' + key + '\n'); journalWriter.flush(); return editor; }
然后取得输出流
public OutputStream newOutputStream(int index) throws IOException { if (index < 0 || index >= valueCount) { throw new IllegalArgumentException("Expected index " + index + " to " + "be greater than 0 and less than the maximum value count " + "of " + valueCount); } synchronized (DiskLruCache.this) { if (entry.currentEditor != this) { throw new IllegalStateException(); } if (!entry.readable) { written[index] = true; } File dirtyFile = entry.getDirtyFile(index); FileOutputStream outputStream; try { outputStream = new FileOutputStream(dirtyFile); } catch (FileNotFoundException e) { // Attempt to recreate the cache directory. directory.mkdirs(); try { outputStream = new FileOutputStream(dirtyFile); } catch (FileNotFoundException e2) { // We are unable to recover. Silently eat the writes. return NULL_OUTPUT_STREAM; } } return new FaultHidingOutputStream(outputStream); } }
注意这个index
其实一般传0 就可以了,DiskLruCache
认为 一个key 下面可以对应多个文件,这些文件 用一个数组来存储,所以正常情况下,我们都是
一个key 对应一个缓存文件 所以传0
//tmp开头的都是临时文件 public File getDirtyFile(int i) { return new File(directory, key + "." + i + ".tmp"); }
然后你这边就能看到,这个输出流,实际上是tmp 也就是缓存文件的 .tmp
也就是缓存文件的 缓存文件 输出流;
这个流 我们写完毕以后 就要commit
;
public void commit() throws IOException { if (hasErrors) { completeEdit(this, false); remove(entry.key); // The previous entry is stale. } else { completeEdit(this, true); } committed = true; }
这个就是根据缓存文件的大小 更新disklrucache的总大小 然后再日志文件里对该key
加入clean
的log
//最后判断是否超过最大的maxSize 以便对缓存进行清理 private synchronized void completeEdit(Editor editor, boolean success) throws IOException { Entry entry = editor.entry; if (entry.currentEditor != editor) { throw new IllegalStateException(); } // If this edit is creating the entry for the first time, every index must have a value. if (success && !entry.readable) { for (int i = 0; i < valueCount; i++) { if (!editor.written[i]) { editor.abort(); throw new IllegalStateException("Newly created entry didn't create value for index " + i); } if (!entry.getDirtyFile(i).exists()) { editor.abort(); return; } } } for (int i = 0; i < valueCount; i++) { File dirty = entry.getDirtyFile(i); if (success) { if (dirty.exists()) { File clean = entry.getCleanFile(i); dirty.renameTo(clean); long oldLength = entry.lengths[i]; long newLength = clean.length(); entry.lengths[i] = newLength; size = size - oldLength + newLength; } } else { deleteIfExists(dirty); } } redundantOpCount++; entry.currentEditor = null; if (entry.readable | success) { entry.readable = true; journalWriter.write(CLEAN + ' ' + entry.key + entry.getLengths() + '\n'); if (success) { entry.sequenceNumber = nextSequenceNumber++; } } else { lruEntries.remove(entry.key); journalWriter.write(REMOVE + ' ' + entry.key + '\n'); } journalWriter.flush(); if (size > maxSize || journalRebuildRequired()) { executorService.submit(cleanupCallable); } }
commit
以后 就会把tmp
文件转正 ,重命名为 真正的缓存文件了;
这个里面的流程和日志文件的rebuild
是差不多的,都是为了防止写文件的出问题。所以做了这样的冗余处理;
DiskLruCache
,利用一个journal
文件,保证了保证了cache
实体的可用性(只有CLEAN的可用),且获取文件的长度的时候可以通过在该文件的记录中读取。
利用FaultHidingOutputStream
对FileOutPutStream
很好的对写入文件过程中是否发生错误进行捕获,而不是让用户手动去调用出错后的处理方法;
看完上述内容是否对您有帮助呢?如果还想对相关知识有进一步的了解或阅读更多相关文章,请关注行业资讯频道,感谢您对的支持。