千家信息网

Android的DiskLruCache磁盘缓存机制原理是怎样的

发表于:2025-01-18 作者:千家信息网编辑
千家信息网最后更新 2025年01月18日,Android的DiskLruCache磁盘缓存机制原理是怎样的,很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。一、为什么
千家信息网最后更新 2025年01月18日Android的DiskLruCache磁盘缓存机制原理是怎样的

Android的DiskLruCache磁盘缓存机制原理是怎样的,很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。

一、为什么用DiskLruCache

1、LruCache和DiskLruCache

LruCacheDiskLruCache两者都是利用到LRU算法,通过LRU算法对缓存进行管理,以最近最少使用作为管理的依据,删除最近最少使用的数据,保留最近最常用的数据;

LruCache运用于内存缓存,而DiskLruCache是存储设备缓存;

2、为何使用DiskLruCache

离线数据存在的意义,当无网络或者是网络状况不好时,APP依然具备部分功能是一种很好的用户体验;

假设网易新闻这类新闻客户端,数据完全存储在缓存中而不使用DiskLruCache技术存储,那么当客户端被销毁,缓存被释放,意味着再次打开APP将是一片空白;

另外DiskLruCache技术也可为app"离线阅读"这一功能做技术支持;

DiskLruCache的存储路径是可以自定义的,不过也可以是默认的存储路径,而默认的存储路径一般是这样的:/sdcard/Android/data/包名/cache,包名是指APP的包名。我们可以在手机上打开,浏览这一路径;

二、DiskLruCache使用

1、添加依赖

// add dependence implementation 'com.jakewharton:disklrucache:2.0.2'

2、创建DiskLruCache对象

/*  * directory - 缓存目录  * appVersion - 缓存版本  * valueCount - 每个key对应value的个数  * maxSize - 缓存大小的上限  */ DiskLruCache diskLruCache = DiskLruCache.open(directory, 1, 1, 1024 * 1024 * 10);

3、添加 / 获取 缓存(一对一)

/**  * 添加一条缓存,一个key对应一个value  */ public void addDiskCache(String key, String value) throws IOException {     File cacheDir = context.getCacheDir();     DiskLruCache diskLruCache = DiskLruCache.open(cacheDir, 1, 1, 1024 * 1024 * 10);     DiskLruCache.Editor editor = diskLruCache.edit(key);     // index与valueCount对应,分别为0,1,2...valueCount-1     editor.newOutputStream(0).write(value.getBytes());      editor.commit();     diskLruCache.close(); } /**  * 获取一条缓存,一个key对应一个value  */ public void getDiskCache(String key) throws IOException {     File directory = context.getCacheDir();     DiskLruCache diskLruCache = DiskLruCache.open(directory, 1, 1, 1024 * 1024 * 10);     String value = diskLruCache.get(key).getString(0);     diskLruCache.close(); }

4、添加 / 获取 缓存(一对多)

/**  * 添加一条缓存,1个key对应2个value  */ public void addDiskCache(String key, String value1, String value2) throws IOException {     File directory = context.getCacheDir();     DiskLruCache diskLruCache = DiskLruCache.open(directory, 1, 2, 1024 * 1024 * 10);     DiskLruCache.Editor editor = diskLruCache.edit(key);     editor.newOutputStream(0).write(value1.getBytes());     editor.newOutputStream(1).write(value2.getBytes());     editor.commit();     diskLruCache.close(); } /**  * 添加一条缓存,1个key对应2个value  */ public void getDiskCache(String key) throws IOException {     File directory = context.getCacheDir();     DiskLruCache diskLruCache = DiskLruCache.open(directory, 1, 2, 1024);     DiskLruCache.Snapshot snapshot = diskLruCache.get(key);     String value1 = snapshot.getString(0);     String value2 = snapshot.getString(1);     diskLruCache.close(); }

三、源码分析

1、open()

DiskLruCache的构造方法是private修饰,这也就是告诉我们,不能通过new DiskLruCache来获取实例,构造方法如下:

private DiskLruCache(File directory, int appVersion, int valueCount, long maxSize) {     this.directory = directory;     this.appVersion = appVersion;     this.journalFile = new File(directory, JOURNAL_FILE);     this.journalFileTmp = new File(directory, JOURNAL_FILE_TEMP);     this.journalFileBackup = new File(directory, JOURNAL_FILE_BACKUP);     this.valueCount = valueCount;     this.maxSize = maxSize; }

但是提供了open()方法,供我们获取DiskLruCache的实例,open方法如下:

/**    * Opens the cache in {@code directory}, creating a cache if none exists    * there.    *    * @param directory a writable directory    * @param valueCount the number of values per cache entry. Must be positive.    * @param maxSize the maximum number of bytes this cache should use to store    * @throws IOException if reading or writing the cache directory fails    */   public static DiskLruCache open(File directory, int appVersion, int valueCount, long maxSize)       throws IOException {     if (maxSize <= 0) {       throw new IllegalArgumentException("maxSize <= 0");     }     if (valueCount <= 0) {       throw new IllegalArgumentException("valueCount <= 0");     }     // If a bkp file exists, use it instead.     //看备份文件是否存在     File backupFile = new File(directory, JOURNAL_FILE_BACKUP);    //如果备份文件存在,并且日志文件也存在,就把备份文件删除     //如果备份文件存在,日志文件不存在,就把备份文件重命名为日志文件      if (backupFile.exists()) {       File journalFile = new File(directory, JOURNAL_FILE);       // If journal file also exists just delete backup file.         //       if (journalFile.exists()) {         backupFile.delete();       } else {         renameTo(backupFile, journalFile, false);       }     }     // Prefer to pick up where we left off.     //初始化DiskLruCache,包括,大小,版本,路径,key对应多少value     DiskLruCache cache = new DiskLruCache(directory, appVersion, valueCount, maxSize);     //如果日志文件存在,就开始赌文件信息,并返回     //主要就是构建entry列表     if (cache.journalFile.exists()) {       try {         cache.readJournal();         cache.processJournal();         return cache;       } catch (IOException journalIsCorrupt) {         System.out             .println("DiskLruCache "                 + directory                 + " is corrupt: "                 + journalIsCorrupt.getMessage()                 + ", removing");         cache.delete();       }     }     //不存在就新建一个     // Create a new empty cache.     directory.mkdirs();     cache = new DiskLruCache(directory, appVersion, valueCount, maxSize);     cache.rebuildJournal();     return cache;   } open函数:如果日志文件存在,直接去构建entry列表;如果不存在,就构建日志文件;

2、rebuildJournal()

构建文件:   //这个就是我们可以直接在disk里面看到的journal文件 主要就是对他的操作  private final File journalFile;  //journal文件的temp 缓存文件,一般都是先构建这个缓存文件,等待构建完成以后将这个缓存文件重新命名为journal  private final File journalFileTmp; /**    * Creates a new journal that omits redundant information. This replaces the    * current journal if it exists.    */   private synchronized void rebuildJournal() throws IOException {     if (journalWriter != null) {       journalWriter.close();     }     //指向journalFileTmp这个日志文件的缓存     Writer writer = new BufferedWriter(         new OutputStreamWriter(new FileOutputStream(journalFileTmp), Util.US_ASCII));     try {       writer.write(MAGIC);       writer.write("\n");       writer.write(VERSION_1);       writer.write("\n");       writer.write(Integer.toString(appVersion));       writer.write("\n");       writer.write(Integer.toString(valueCount));       writer.write("\n");       writer.write("\n");       for (Entry entry : lruEntries.values()) {         if (entry.currentEditor != null) {           writer.write(DIRTY + ' ' + entry.key + '\n');         } else {           writer.write(CLEAN + ' ' + entry.key + entry.getLengths() + '\n');         }       }     } finally {       writer.close();     }     if (journalFile.exists()) {       renameTo(journalFile, journalFileBackup, true);     }      //所以这个地方 构建日志文件的流程主要就是先构建出日志文件的缓存文件,如果缓存构建成功 那就直接重命名这个缓存文件,这样做好处在哪里?     renameTo(journalFileTmp, journalFile, false);     journalFileBackup.delete();     //这里也是把写入日志文件的writer初始化     journalWriter = new BufferedWriter(         new OutputStreamWriter(new FileOutputStream(journalFile, true), Util.US_ASCII));   }

来看当日志文件存在的时候,做了什么

3、readJournal()

private void readJournal() throws IOException { StrictLineReader reader = new StrictLineReader(new FileInputStream(journalFile), Util.US_ASCII); try { //读日志文件的头信息   String magic = reader.readLine();   String version = reader.readLine();   String appVersionString = reader.readLine();   String valueCountString = reader.readLine();   String blank = reader.readLine();   if (!MAGIC.equals(magic)       || !VERSION_1.equals(version)       || !Integer.toString(appVersion).equals(appVersionString)       || !Integer.toString(valueCount).equals(valueCountString)       || !"".equals(blank)) {     throw new IOException("unexpected journal header: [" + magic + ", " + version + ", "         + valueCountString + ", " + blank + "]");   } //这里开始,就开始读取日志信息   int lineCount = 0;   while (true) {     try {     //构建LruEntries entry列表       readJournalLine(reader.readLine());       lineCount++;     } catch (EOFException endOfJournal) {       break;     }   }   redundantOpCount = lineCount - lruEntries.size();   // If we ended on a truncated line, rebuild the journal before appending to it.   if (reader.hasUnterminatedLine()) {     rebuildJournal();   } else {     //初始化写入文件的writer     journalWriter = new BufferedWriter(new OutputStreamWriter(         new FileOutputStream(journalFile, true), Util.US_ASCII));   } } finally {   Util.closeQuietly(reader); } }

然后看下这个函数里面的几个主要变量:

//每个entry对应的缓存文件的格式 一般为1,也就是一个key,对应几个缓存,一般设为1,key-value一一对应的关系 private final int valueCount; private long size = 0; //这个是专门用于写入日志文件的writer private Writer journalWriter; //这个集合应该不陌生了, private final LinkedHashMap lruEntries =         new LinkedHashMap(0, 0.75f, true); //这个值大于一定数目时 就会触发对journal文件的清理了 private int redundantOpCount;

下面就看下entry这个实体类的内部结构

private final class Entry {         private final String key;         /**          * Lengths of this entry's files.          * 这个entry中 每个文件的长度,这个数组的长度为valueCount 一般都是1          */         private final long[] lengths;         /**          * True if this entry has ever been published.          * 曾经被发布过 那他的值就是true          */         private boolean readable;         /**          * The ongoing edit or null if this entry is not being edited.          * 这个entry对应的editor          */         private Editor currentEditor;         @Override         public String toString() {             return "Entry{" +                     "key='" + key + '\'' +                     ", lengths=" + Arrays.toString(lengths) +                     ", readable=" + readable +                     ", currentEditor=" + currentEditor +                     ", sequenceNumber=" + sequenceNumber +                     '}';         }         /**          * The sequence number of the most recently committed edit to this entry.          * 最近编辑他的序列号          */         private long sequenceNumber;         private Entry(String key) {             this.key = key;             this.lengths = new long[valueCount];         }         public String getLengths() throws IOException {             StringBuilder result = new StringBuilder();             for (long size : lengths) {                 result.append(' ').append(size);             }             return result.toString();         }         /**          * Set lengths using decimal numbers like "10123".          */         private void setLengths(String[] strings) throws IOException {             if (strings.length != valueCount) {                 throw invalidLengths(strings);             }             try {                 for (int i = 0; i < strings.length; i++) {                     lengths[i] = Long.parseLong(strings[i]);                 }             } catch (NumberFormatException e) {                 throw invalidLengths(strings);             }         }         private IOException invalidLengths(String[] strings) throws IOException {             throw new IOException("unexpected journal line: " + java.util.Arrays.toString(strings));         }         //臨時文件創建成功了以後 就會重命名為正式文件了         public File getCleanFile(int i) {             Log.v("getCleanFile","getCleanFile path=="+new File(directory, key + "." + i).getAbsolutePath());             return new File(directory, key + "." + i);         }         //tmp开头的都是临时文件         public File getDirtyFile(int i) {             Log.v("getDirtyFile","getDirtyFile path=="+new File(directory, key + "." + i + ".tmp").getAbsolutePath());             return new File(directory, key + "." + i + ".tmp");         } }

DiskLruCacheopen函数的主要流程就基本走完了;

4、get()

/**    * Returns a snapshot of the entry named {@code key}, or null if it doesn't    * exist is not currently readable. If a value is returned, it is moved to    * the head of the LRU queue.    * 通过key获取对应的snapshot    */   public synchronized Snapshot get(String key) throws IOException {     checkNotClosed();     validateKey(key);     Entry entry = lruEntries.get(key);     if (entry == null) {       return null;     }     if (!entry.readable) {       return null;     }     // Open all streams eagerly to guarantee that we see a single published     // snapshot. If we opened streams lazily then the streams could come     // from different edits.     InputStream[] ins = new InputStream[valueCount];     try {       for (int i = 0; i < valueCount; i++) {         ins[i] = new FileInputStream(entry.getCleanFile(i));       }     } catch (FileNotFoundException e) {       // A file must have been deleted manually!       for (int i = 0; i < valueCount; i++) {         if (ins[i] != null) {           Util.closeQuietly(ins[i]);         } else {           break;         }       }       return null;     }     redundantOpCount++;     //在取得需要的文件以后 记得在日志文件里增加一条记录 并检查是否需要重新构建日志文件     journalWriter.append(READ + ' ' + key + '\n');     if (journalRebuildRequired()) {       executorService.submit(cleanupCallable);     }     return new Snapshot(key, entry.sequenceNumber, ins, entry.lengths);   }

5、validateKey

private void validateKey(String key) {         Matcher matcher = LEGAL_KEY_PATTERN.matcher(key);         if (!matcher.matches()) {           throw new IllegalArgumentException("keys must match regex "                   + STRING_KEY_PATTERN + ": \"" + key + "\"");         }   }

这里是对存储entrymap的key做了正则验证,所以key一定要用md5加密,因为有些特殊字符验证不能通过;

然后看这句代码对应的:

if (journalRebuildRequired()) {       executorService.submit(cleanupCallable);     }

对应的回调函数是:

/** This cache uses a single background thread to evict entries. */   final ThreadPoolExecutor executorService =       new ThreadPoolExecutor(0, 1, 60L, TimeUnit.SECONDS, new LinkedBlockingQueue());   private final Callable cleanupCallable = new Callable() {     public Void call() throws Exception {       synchronized (DiskLruCache.this) {         if (journalWriter == null) {           return null; // Closed.         }         trimToSize();         if (journalRebuildRequired()) {           rebuildJournal();           redundantOpCount = 0;         }       }       return null;     }   };

其中再来看看trimTOSize()的状态

6、trimTOSize()

private void trimToSize() throws IOException {     while (size > maxSize) {       Map.Entry toEvict = lruEntries.entrySet().iterator().next();       remove(toEvict.getKey());     }   }

就是检测总缓存是否超过了限制数量,

再来看journalRebuildRequired函数

7、journalRebuildRequired()

/**    * We only rebuild the journal when it will halve the size of the journal    * and eliminate at least 2000 ops.    */   private boolean journalRebuildRequired() {     final int redundantOpCompactThreshold = 2000;     return redundantOpCount >= redundantOpCompactThreshold //         && redundantOpCount >= lruEntries.size();   }

就是校验redundantOpCount是否超出了范围,如果是,就重构日志文件;

最后看get函数的返回值 new Snapshot()

/** A snapshot of the values for an entry. */ //这个类持有该entry中每个文件的inputStream 通过这个inputStream 可以读取他的内容   public final class Snapshot implements Closeable {     private final String key;     private final long sequenceNumber;     private final InputStream[] ins;     private final long[] lengths;     private Snapshot(String key, long sequenceNumber, InputStream[] ins, long[] lengths) {       this.key = key;       this.sequenceNumber = sequenceNumber;       this.ins = ins;       this.lengths = lengths;     }     /**      * Returns an editor for this snapshot's entry, or null if either the      * entry has changed since this snapshot was created or if another edit      * is in progress.      */     public Editor edit() throws IOException {       return DiskLruCache.this.edit(key, sequenceNumber);     }     /** Returns the unbuffered stream with the value for {@code index}. */     public InputStream getInputStream(int index) {       return ins[index];     }     /** Returns the string value for {@code index}. */     public String getString(int index) throws IOException {       return inputStreamToString(getInputStream(index));     }     /** Returns the byte length of the value for {@code index}. */     public long getLength(int index) {       return lengths[index];     }     public void close() {       for (InputStream in : ins) {         Util.closeQuietly(in);       }     }   }

到这里就明白了get最终返回的其实就是entry根据key 来取的snapshot对象,这个对象直接把inputStream暴露给外面;

8、save的过程

public Editor edit(String key) throws IOException {     return edit(key, ANY_SEQUENCE_NUMBER); } //根据传进去的key 创建一个entry 并且将这个key加入到entry的那个map里 然后创建一个对应的editor //同时在日志文件里加入一条对该key的dirty记录 private synchronized Editor edit(String key, long expectedSequenceNumber) throws IOException {     //因为这里涉及到写文件 所以要先校验一下写日志文件的writer 是否被正确的初始化     checkNotClosed();     //这个地方是校验 我们的key的,通常来说 假设我们要用这个缓存来存一张图片的话,我们的key 通常是用这个图片的     //网络地址 进行md5加密,而对这个key的格式在这里是有要求的 所以这一步就是验证key是否符合规范     validateKey(key);     Entry entry = lruEntries.get(key);     if (expectedSequenceNumber != ANY_SEQUENCE_NUMBER && (entry == null             || entry.sequenceNumber != expectedSequenceNumber)) {         return null; // Snapshot is stale.     }     if (entry == null) {         entry = new Entry(key);         lruEntries.put(key, entry);     } else if (entry.currentEditor != null) {         return null; // Another edit is in progress.     }     Editor editor = new Editor(entry);     entry.currentEditor = editor;     // Flush the journal before creating files to prevent file leaks.     journalWriter.write(DIRTY + ' ' + key + '\n');     journalWriter.flush();     return editor; }

然后取得输出流

public OutputStream newOutputStream(int index) throws IOException {         if (index < 0 || index >= valueCount) {             throw new IllegalArgumentException("Expected index " + index + " to "                     + "be greater than 0 and less than the maximum value count "                     + "of " + valueCount);         }         synchronized (DiskLruCache.this) {             if (entry.currentEditor != this) {                 throw new IllegalStateException();             }             if (!entry.readable) {                 written[index] = true;             }             File dirtyFile = entry.getDirtyFile(index);             FileOutputStream outputStream;             try {                 outputStream = new FileOutputStream(dirtyFile);             } catch (FileNotFoundException e) {                 // Attempt to recreate the cache directory.                 directory.mkdirs();                 try {                     outputStream = new FileOutputStream(dirtyFile);                 } catch (FileNotFoundException e2) {                     // We are unable to recover. Silently eat the writes.                     return NULL_OUTPUT_STREAM;                 }             }             return new FaultHidingOutputStream(outputStream);         }     }

注意这个index 其实一般传0 就可以了,DiskLruCache 认为 一个key 下面可以对应多个文件,这些文件 用一个数组来存储,所以正常情况下,我们都是

一个key 对应一个缓存文件 所以传0

//tmp开头的都是临时文件      public File getDirtyFile(int i) {          return new File(directory, key + "." + i + ".tmp");      }

然后你这边就能看到,这个输出流,实际上是tmp 也就是缓存文件的 .tmp 也就是缓存文件的 缓存文件 输出流;

这个流 我们写完毕以后 就要commit;

public void commit() throws IOException {         if (hasErrors) {             completeEdit(this, false);             remove(entry.key); // The previous entry is stale.         } else {             completeEdit(this, true);         }         committed = true;     }

这个就是根据缓存文件的大小 更新disklrucache的总大小 然后再日志文件里对该key加入cleanlog

//最后判断是否超过最大的maxSize 以便对缓存进行清理 private synchronized void completeEdit(Editor editor, boolean success) throws IOException {     Entry entry = editor.entry;     if (entry.currentEditor != editor) {         throw new IllegalStateException();     }     // If this edit is creating the entry for the first time, every index must have a value.     if (success && !entry.readable) {         for (int i = 0; i < valueCount; i++) {             if (!editor.written[i]) {                 editor.abort();                 throw new IllegalStateException("Newly created entry didn't create value for index " + i);             }             if (!entry.getDirtyFile(i).exists()) {                 editor.abort();                 return;             }         }     }     for (int i = 0; i < valueCount; i++) {         File dirty = entry.getDirtyFile(i);         if (success) {             if (dirty.exists()) {                 File clean = entry.getCleanFile(i);                 dirty.renameTo(clean);                 long oldLength = entry.lengths[i];                 long newLength = clean.length();                 entry.lengths[i] = newLength;                 size = size - oldLength + newLength;             }         } else {             deleteIfExists(dirty);         }     }     redundantOpCount++;     entry.currentEditor = null;     if (entry.readable | success) {         entry.readable = true;         journalWriter.write(CLEAN + ' ' + entry.key + entry.getLengths() + '\n');         if (success) {             entry.sequenceNumber = nextSequenceNumber++;         }     } else {         lruEntries.remove(entry.key);         journalWriter.write(REMOVE + ' ' + entry.key + '\n');     }     journalWriter.flush();     if (size > maxSize || journalRebuildRequired()) {         executorService.submit(cleanupCallable);     } }

commit以后 就会把tmp文件转正 ,重命名为 真正的缓存文件了;

这个里面的流程和日志文件的rebuild 是差不多的,都是为了防止写文件的出问题。所以做了这样的冗余处理;

DiskLruCache,利用一个journal文件,保证了保证了cache实体的可用性(只有CLEAN的可用),且获取文件的长度的时候可以通过在该文件的记录中读取。

利用FaultHidingOutputStreamFileOutPutStream很好的对写入文件过程中是否发生错误进行捕获,而不是让用户手动去调用出错后的处理方法;

看完上述内容是否对您有帮助呢?如果还想对相关知识有进一步的了解或阅读更多相关文章,请关注行业资讯频道,感谢您对的支持。

0