千家信息网

Java怎么实现最小生成树MST

发表于:2025-01-24 作者:千家信息网编辑
千家信息网最后更新 2025年01月24日,本篇内容介绍了"Java怎么实现最小生成树MST"的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!简单讲
千家信息网最后更新 2025年01月24日Java怎么实现最小生成树MST

本篇内容介绍了"Java怎么实现最小生成树MST"的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!

简单讲解

图的定义时 我们规定一个连通图的生成树是一个极小连通子图 含有N个顶点N-1个边 我们把图中带权的边 最小代价生成的树成为最小生成树。

普里姆(Prim)算法 prim算法适合稠密图,其时间复杂度为O(n^2),其时间复杂度与边得数目无关以顶点找顶点 考虑权值

存储方式为邻接矩阵

基本思想:假设G=(V,E)是连通的,TE是G上最小生成树中边的集合。算法从U={u0}(u0∈V)、TE={}开始。重复执行下列操作:

在所有u∈U,v∈V-U的边(u,v)∈E中找一条权值最小的边(u0,v0)并入集合TE中,同时v0并入U,直到V=U为止。

此时,TE中必有n-1条边,T=(V,TE)为G的最小生成树。

Prim算法的核心:始终保持TE中的边集构成一棵生成树。

注意:prim算法适合稠密图,其时间复杂度为O(n^2),其时间复杂度与边得数目无关,

为了更好理解我们在这里举一个例子,示例如下:

(1)图中有6个顶点v1-v6,每条边的边权值都在图上;在进行prim算法时,我先随意选择一个顶点作为起始点,当然我们一般选择v1作为起始点,好,现在我们设U集合为当前所找到最小生成树里面的顶点,TE集合为所找到的边,现在状态如下:

U={v1}; TE={};

(2)现在查找一个顶点在U集合中,另一个顶点在V-U集合中的最小权值,如下图,在红线相交的线上找最小值。

通过图中我们可以看到边v1-v3的权值最小为1,那么将v3加入到U集合,(v1,v3)加入到TE,状态如下:

U={v1,v3}; TE={(v1,v3)};

(3)继续寻找,现在状态为U={v1,v3}; TE={(v1,v3)};在与红线相交的边上查找最小值。

我们可以找到最小的权值为(v3,v6)=4,那么我们将v6加入到U集合,并将最小边加入到TE集合,那么加入后状态如下:

U={v1,v3,v6}; TE={(v1,v3),(v3,v6)}; 如此循环一下直到找到所有顶点为止。

(4)下图像我们展示了全部的查找过程:

#include#includeusing  namespace std;#define MAX 100#define MAXCOST 65535int graph[MAX][MAX];int Prim(int graph[][MAX], int m)//m 是点数{    int lowcost[m];    int mst[m];    int i, j, min, k, sum = 0;    mst[1] = 0;    lowcost[1]=0;    for (i = 2; i <= m; i++)    {        lowcost[i] = graph[1][i];        mst[i] = 1;    }    for (i = 2; i <= m; i++)    {        min = MAXCOST;        k = 0;        for (j = 2; j <= m; j++)        {            if (lowcost[j] < min && lowcost[j] != 0)            {                min = lowcost[j];                k = j;//找到最小值下标            }        }        cout << "V" << mst[k] << "-V" << k << "=" << min << endl;        sum += min;        lowcost[k] = 0;//到达k的距离为0 说明这个顶点完成了任务        for (j = 2; j <= m; j++) // 更新lowcost 数组        {            if (lowcost[j] != 0 && graph[k][j] < lowcost[j])            {                lowcost[j] = graph[k][j];/本来到达不了 由于k的引入 可以到达了                mst[j] = k; //这是不能总是从V1开始去别的点 把 现在能找到的近距离类似  mst[k]            }        }    }    return sum;}int main(){    int i, j, k, m, n;    int cost;    cout<<"please input V and E:";    cin >> m >> n;//m=顶点的个数,n=边的个数    //初始化图G    for (i = 1; i <= m; i++)    {        for (j = 1; j <= m; j++)        {            graph[i][j] = MAXCOST;        }    }    //构建图G    cout<<"please intput i j and cost:"<> i >> j >> cost;        graph[i][j] = cost;        graph[j][i] = cost;    }    //求解最小生成树    cost = Prim(graph, m);    //输出最小权值和    cout << "最小权值和=" << cost << endl;    return 0;}

测试数据 V E

6 10

1 2 6

1 3 1

1 4 5

2 3 5

2 5 3

3 4 5

3 5 6

3 6 4

4 6 2

5 6 6

结果

V1-V3=1

V3-V6=4

V6-V4=2

V3-V2=5

V2-V5=3

最小权值和=15

请按任意键继续. . .

"Java怎么实现最小生成树MST"的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注网站,小编将为大家输出更多高质量的实用文章!

0