如何分析Argo Workflows-Kubernetes的工作流引擎
如何分析Argo Workflows-Kubernetes的工作流引擎,很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。
什么是Argo Workflows?
Argo Workflows是一个开源项目,为Kubernetes提供container-native工作流程,其主要通过Kubernetes CRD实现的。
特点如下:
工作流的每一步都是一个容器
将多步骤工作流建模为一系列任务,或者使用有向无环图(DAG)描述任务之间的依赖关系
可以在短时间内轻松运行用于机器学习或数据处理的计算密集型作业
在Kubernetes上运行CI/CD Pipeline,无需复杂的软件配置
安装
安装控制器端
Argo Wordflows的安装非常简单,直接使用以下命令安装即可。
kubectl create ns argo kubectl apply -n argo -f https://raw.githubusercontent.com/argoproj/argo-workflows/stable/manifests/quick-start-postgres.yaml
安装完成后,会生成以下4个pod。
# kubectl get po -n argo NAME READY STATUS RESTARTS AGE argo-server-574ddc66b-62rjc 1/1 Running 4 4h35m minio 1/1 Running 0 4h35m postgres-56fd897cf4-k8fwd 1/1 Running 0 4h35m workflow-controller-77658c77cc-p25ll 1/1 Running 4 4h35m
其中:
argo-server是argo服务端
mino是进行制品仓库
postgres是数据库
workflow-controller是流程控制器
然后配置一个server端的ingress,即可访问UI,配置清单如下(我这里使用的是traefik):
apiVersion: traefik.containo.us/v1alpha1 kind: IngressRoute metadata: name: argo-ui namespace: argo spec: entryPoints: - web routes: - match: Host(`argowork-test.coolops.cn`) kind: Rule services: - name: argo-server port: 2746
UI界面如下:
再配置一个minio的ingress,配置清单如下:
apiVersion: traefik.containo.us/v1alpha1 kind: IngressRoute metadata: name: minio namespace: argo spec: entryPoints: - web routes: - match: Host(`minio-test.coolops.cn`) kind: Rule services: - name: minio port: 9000
UI界面如下(默认用户名密码是:admin:password):
安装Client端
Argo Workflows提供Argo CLI,其安装方式也非常简单,如下:Linux系统:
# Download the binary curl -sLO https://github.com/argoproj/argo/releases/download/v3.0.0-rc4/argo-linux-amd64.gz # Unzip gunzip argo-linux-amd64.gz # Make binary executable chmod +x argo-linux-amd64 # Move binary to path mv ./argo-linux-amd64 /usr/local/bin/argo
安装完成后,使用以下命令校验是否安装成功。
# argo version argo: v3.0.0-rc4 BuildDate: 2021-03-02T21:42:55Z GitCommit: ae5587e97dad0e4806f7a230672b998fe140a767 GitTreeState: clean GitTag: v3.0.0-rc4 GoVersion: go1.13 Compiler: gc Platform: linux/amd64
其主要的命令有:
list 列出工作流 logs 查看工作流的日志 submit 创建工作流 watch 实时监听工作流 get 现实详细信息 delete 删除工作流 stop 停止工作流
更多命令可以使用argo --help进行查看。
然后可以使用一个简单的hello world的WorkFlow,如下:
apiVersion: argoproj.io/v1alpha1 kind: Workflow metadata: generateName: hello-world- labels: workflows.argoproj.io/archive-strategy: "false" spec: entrypoint: whalesay templates: - name: whalesay container: image: docker/whalesay:latest command: [cowsay] args: ["hello world"]
使用如下命令创建并观察workflow。
$ argo submit -n argo helloworld.yaml --watch
然后可以看到以下输出。
Name: hello-world-9pw7v Namespace: argo ServiceAccount: default Status: Succeeded Conditions: Completed True Created: Mon Mar 08 14:51:35 +0800 (10 seconds ago) Started: Mon Mar 08 14:51:35 +0800 (10 seconds ago) Finished: Mon Mar 08 14:51:45 +0800 (now) Duration: 10 seconds Progress: 1/1 ResourcesDuration: 4s*(1 cpu),4s*(100Mi memory) STEP TEMPLATE PODNAME DURATION MESSAGE ✔ hello-world-9pw7v whalesay hello-world-9pw7v 5s
还可以通过argo list来查看状态,如下:
# argo list -n argo NAME STATUS AGE DURATION PRIORITY hello-world-9pw7v Succeeded 1m 10s 0
使用argo logs来查看具体的日志,如下:
# argo logs -n argo hello-world-9pw7v hello-world-9pw7v: _____________ hello-world-9pw7v: < hello world > hello-world-9pw7v: ------------- hello-world-9pw7v: \ hello-world-9pw7v: \ hello-world-9pw7v: \ hello-world-9pw7v: ## . hello-world-9pw7v: ## ## ## == hello-world-9pw7v: ## ## ## ## === hello-world-9pw7v: /""""""""""""""""___/ === hello-world-9pw7v: ~~~ {~~ ~~~~ ~~~ ~~~~ ~~ ~ / ===- ~~~ hello-world-9pw7v: \______ o __/ hello-world-9pw7v: \ \ __/ hello-world-9pw7v: \____\______/
核心概念
Workflow
Workflow是Argo中最重要的资源,其主要有两个重要功能:
它定义要执行的工作流
它存储工作流程的状态
要执行的工作流定义在Workflow.spec字段中,其主要包括templates和entrypoint,如下:
apiVersion: argoproj.io/v1alpha1 kind: Workflow metadata: generateName: hello-world- # Workflow的配置名称 spec: entrypoint: whalesay # 解析whalesay templates templates: - name: whalesay # 定义whalesay templates,和entrypoint保持一致 container: # 定义一个容器,输出"helloworld" image: docker/whalesay command: [cowsay] args: ["hello world"]
Templates
templates是列表结构,主要分为两类:
定义具体的工作流
调用其他模板提供并行控制
定义具体的工作流
定义具体的工作流有4种类别,如下:
Container
Script
Resource
Suspend
Container
container是最常用的模板类型,它将调度一个container,其模板规范和K8S的容器规范相同,如下:
- name: whalesay container: image: docker/whalesay command: [cowsay] args: ["hello world"]
Script
Script是Container的另一种包装实现,其定义方式和Container相同,只是增加了source字段用于自定义脚本,如下:
- name: gen-random-int script: image: python:alpine3.6 command: [python] source: | import random i = random.randint(1, 100) print(i)
脚本的输出结果会根据调用方式自动导出到{{tasks..outputs.result}}或{{steps..outputs.result}}中。
Resource
Resource主要用于直接在K8S集群上执行集群资源操作,可以 get, create, apply, delete, replace, patch集群资源。如下在集群中创建一个ConfigMap类型资源:
- name: k8s-owner-reference resource: action: create manifest: | apiVersion: v1 kind: ConfigMap metadata: generateName: owned-eg- data: some: value
Suspend
Suspend主要用于暂停,可以暂停一段时间,也可以手动恢复,命令使用argo resume进行恢复。定义格式如下:
- name: delay suspend: duration: "20s"
调用其他模板提供并行控制
调用其他模板也有两种类别:
Steps
Dag
Steps
Steps主要是通过定义一系列步骤来定义任务,其结构是"list of lists",外部列表将顺序执行,内部列表将并行执行。如下:
- name: hello-hello-hello steps: - - name: step1 template: prepare-data - - name: step2a template: run-data-first-half - name: step2b template: run-data-second-half
其中step1和step2a是顺序执行,而step2a和step2b是并行执行。
还可以通过When来进行条件判断。如下:
apiVersion: argoproj.io/v1alpha1 kind: Workflow metadata: generateName: coinflip- spec: entrypoint: coinflip templates: - name: coinflip steps: - - name: flip-coin template: flip-coin - - name: heads template: heads when: "{{steps.flip-coin.outputs.result}} == heads" - name: tails template: tails when: "{{steps.flip-coin.outputs.result}} == tails" - name: flip-coin script: image: python:alpine3.6 command: [python] source: | import random result = "heads" if random.randint(0,1) == 0 else "tails" print(result) - name: heads container: image: alpine:3.6 command: [sh, -c] args: ["echo \"it was heads\""] - name: tails container: image: alpine:3.6 command: [sh, -c] args: ["echo \"it was tails\""]
提交这个Workflow,执行效果如下:
除了使用When进行条件判断,还可以进行循环操作,示例代码如下:
apiVersion: argoproj.io/v1alpha1 kind: Workflow metadata: generateName: loops- spec: entrypoint: loop-example templates: - name: loop-example steps: - - name: print-message template: whalesay arguments: parameters: - name: message value: "{{item}}" withItems: - hello world - goodbye world - name: whalesay inputs: parameters: - name: message container: image: docker/whalesay:latest command: [cowsay] args: ["{{inputs.parameters.message}}"]
提交Workflow,输出结果如下:
Dag
Dag主要用于定义任务的依赖关系,可以设置开始特定任务之前必须完成其他任务,没有任何依赖关系的任务将立即执行。如下:
- name: diamond dag: tasks: - name: A template: echo - name: B dependencies: [A] template: echo - name: C dependencies: [A] template: echo - name: D dependencies: [B, C] template: echo
其中A会立即执行,B和C会依赖A,D依赖B和C。
然后运行一个示例看看效果,示例如下:
apiVersion: argoproj.io/v1alpha1 kind: Workflow metadata: generateName: dag-diamond- spec: entrypoint: diamond templates: - name: diamond dag: tasks: - name: A template: echo arguments: parameters: [{name: message, value: A}] - name: B dependencies: [A] template: echo arguments: parameters: [{name: message, value: B}] - name: C dependencies: [A] template: echo arguments: parameters: [{name: message, value: C}] - name: D dependencies: [B, C] template: echo arguments: parameters: [{name: message, value: D}] - name: echo inputs: parameters: - name: message container: image: alpine:3.7 command: [echo, "{{inputs.parameters.message}}"]
提交workflow。
argo submit -n argo dag.yam --watch
image.png
Variables
在argo的Workflow中允许使用变量的,如下:
apiVersion: argoproj.io/v1alpha1 kind: Workflow metadata: generateName: hello-world-parameters- spec: entrypoint: whalesay arguments: parameters: - name: message value: hello world templates: - name: whalesay inputs: parameters: - name: message container: image: docker/whalesay command: [ cowsay ] args: [ "{{inputs.parameters.message}}" ]
首先在spec字段定义arguments,定义变量message,其值是hello world,然后在templates字段中需要先定义一个inputs字段,用于templates的输入参数,然后在使用"{{}}"形式引用变量。
变量还可以进行一些函数运算,主要有:
filter:过滤
asInt:转换为Int
asFloat:转换为Float
string:转换为String
toJson:转换为Json
例子:
filter([1, 2], { # > 1}) asInt(inputs.parameters["my-int-param"]) asFloat(inputs.parameters["my-float-param"]) string(1) toJson([1, 2])
更多语法可以访问https://github.com/antonmedv/expr/blob/master/docs/Language-Definition.md进行学习。
制品库
在安装argo的时候,已经安装了mino作为制品库,那么到底该如何使用呢?
先看一个官方的例子,如下:
apiVersion: argoproj.io/v1alpha1 kind: Workflow metadata: generateName: artifact-passing- spec: entrypoint: artifact-example templates: - name: artifact-example steps: - - name: generate-artifact template: whalesay - - name: consume-artifact template: print-message arguments: artifacts: - name: message from: "{{steps.generate-artifact.outputs.artifacts.hello-art}}" - name: whalesay container: image: docker/whalesay:latest command: [sh, -c] args: ["sleep 1; cowsay hello world | tee /tmp/hello_world.txt"] outputs: artifacts: - name: hello-art path: /tmp/hello_world.txt - name: print-message inputs: artifacts: - name: message path: /tmp/message container: image: alpine:latest command: [sh, -c] args: ["cat /tmp/message"]
其分为两步:
首先生成制品
然后获取制品
提交Workflow,运行结果如下:
然后在minio中可以看到生成的制品,制品经过了压缩,如下:
WorkflowTemplate
WorkflowTemplate是Workflow的模板,可以从WorkflowTemplate内部或者集群上其他Workflow和WorkflowTemplate引用它们。
WorkflowTemplate和template的区别:
template只是Workflow中templates下的一个任务,当我们定义一个Workflow时,至少需要定义一个template
WorkflowTemplate是驻留在集群中的Workflow的定义,它是Workflow的定义,因为它包含模板,可以从WorkflowTemplate内部或者集群上其他Workflow和WorkflowTemplate引用它们。
在2.7版本后,WorkflowTemplate的定义和Workflow的定义一样,我们可以简单的将kind:Workflow改成kind:WorkflowTemplate。比如:
apiVersion: argoproj.io/v1alpha1 kind: WorkflowTemplate metadata: name: workflow-template-1 spec: entrypoint: whalesay-template arguments: parameters: - name: message value: hello world templates: - name: whalesay-template inputs: parameters: - name: message container: image: docker/whalesay command: [cowsay] args: ["{{inputs.parameters.message}}"]
创建WorkflowTemplate,如下
argo template create workflowtemplate.yaml
然后在Workflow中引用,如下:
apiVersion: argoproj.io/v1alpha1 kind: Workflow metadata: generateName: workflow-template-hello-world- spec: entrypoint: whalesay templates: - name: whalesay steps: # 引用模板必须在steps/dag/template下 - - name: call-whalesay-template templateRef: # 应用模板字段 name: workflow-template-1 # WorkflowTemplate名 template: whalesay-template # 具体的template名 arguments: # 参数 parameters: - name: message value: "hello world"
ClusterWorkflowTemplate
ClusterWorkflowTemplate创建的是一个集群范围内的WorkflowTemplate,其他workflow可以引用它。
如下定义一个ClusterWorkflow。
apiVersion: argoproj.io/v1alpha1 kind: ClusterWorkflowTemplate metadata: name: cluster-workflow-template-whalesay-template spec: templates: - name: whalesay-template inputs: parameters: - name: message container: image: docker/whalesay command: [cowsay] args: ["{{inputs.parameters.message}}"]
然后在workflow中使用templateRef去引用它,如下:
apiVersion: argoproj.io/v1alpha1 kind: Workflow metadata: generateName: workflow-template-hello-world- spec: entrypoint: whalesay templates: - name: whalesay steps: - - name: call-whalesay-template templateRef: #引用模板 name: cluster-workflow-template-whalesay-template # ClusterWorkflow名 template: whalesay-template # 具体的模板名 clusterScope: true # 表示是ClusterWorkflow arguments: # 参数 parameters: - name: message value: "hello world"
实践
上面大概叙述了一下argo的基本理论知识,更多的理论知识可以到官网去学习。
下面将使用一个简单的CI/CD实践,来了解一下用argo workflow应该如何做。
CI/CD的整个流程很简单,即:拉代码->编译->构建镜像->上传镜像->部署。
定义一个WorkflowTemplate,如下:
apiVersion: argoproj.io/v1alpha1 kind: WorkflowTemplate metadata: annotations: workflows.argoproj.io/description: | Checkout out from Git, build and deploy application. workflows.argoproj.io/maintainer: '@joker' workflows.argoproj.io/tags: java, git workflows.argoproj.io/version: '>= 2.9.0' name: devops-java spec: entrypoint: main arguments: parameters: - name: repo value: gitlab-test.coolops.cn/root/springboot-helloworld.git - name: branch value: master - name: image value: registry.cn-hangzhou.aliyuncs.com/rookieops/myapp:202103101613 - name: cache-image value: registry.cn-hangzhou.aliyuncs.com/rookieops/myapp - name: dockerfile value: Dockerfile - name: devops-cd-repo value: gitlab-test.coolops.cn/root/devops-cd.git - name: gitlabUsername value: devops - name: gitlabPassword value: devops123456 templates: - name: main steps: - - name: Checkout template: Checkout - - name: Build template: Build - - name: BuildImage template: BuildImage - - name: Deploy template: Deploy # 拉取代码 - name: Checkout script: image: registry.cn-hangzhou.aliyuncs.com/rookieops/maven:3.5.0-alpine workingDir: /work command: - sh source: | git clone --branch {{workflow.parameters.branch}} http://{{workflow.parameters.gitlabUsername}}:{{workflow.parameters.gitlabPassword}}@{{workflow.parameters.repo}} . volumeMounts: - mountPath: /work name: work # 编译打包 - name: Build script: image: registry.cn-hangzhou.aliyuncs.com/rookieops/maven:3.5.0-alpine workingDir: /work command: - sh source: mvn -B clean package -Dmaven.test.skip=true -Dautoconfig.skip volumeMounts: - mountPath: /work name: work # 构建镜像 - name: BuildImage volumes: - name: docker-config secret: secretName: docker-config container: image: registry.cn-hangzhou.aliyuncs.com/rookieops/kaniko-executor:v1.5.0 workingDir: /work args: - --context=. - --dockerfile={{workflow.parameters.dockerfile}} - --destination={{workflow.parameters.image}} - --skip-tls-verify - --reproducible - --cache=true - --cache-repo={{workflow.parameters.cache-image}} volumeMounts: - mountPath: /work name: work - name: docker-config mountPath: /kaniko/.docker/ # 部署 - name: Deploy script: image: registry.cn-hangzhou.aliyuncs.com/rookieops/kustomize:v3.8.1 workingDir: /work command: - sh source: | git remote set-url origin http://{{workflow.parameters.gitlabUsername}}:{{workflow.parameters.gitlabPassword}}@{{workflow.parameters.devops-cd-repo}} git config --global user.name "Administrator" git config --global user.email "coolops@163.com" git clone http://{{workflow.parameters.gitlabUsername}}:{{workflow.parameters.gitlabPassword}}@{{workflow.parameters.devops-cd-repo}} /work/devops-cd cd /work/devops-cd git pull cd /work/devops-cd/devops-simple-java kustomize edit set image {{workflow.parameters.image}} git commit -am 'image update' git push origin master volumeMounts: - mountPath: /work name: work volumeClaimTemplates: - name: work metadata: name: work spec: storageClassName: nfs-client-storageclass accessModes: [ "ReadWriteOnce" ] resources: requests: storage: 1Gi
说明:
1、使用kaniko来创建镜像,不用挂载docker.sock,但是push镜像的时候需要config.json,所以首先需要创建一个secret,如下:
kubectl create secret generic docker-config --from-file=.docker/config.json -n argo
2、准备好storageClass,当然也可以不需要,直接使用empty,不过可以将缓存文件这些持久化,可以加速构建(我上面没有做)。
3、创建WorkflowTemplate,命令如下:
argo template create -n argo devops-java.yaml
4、创建Workflow,可以手动创建,如下:
apiVersion: argoproj.io/v1alpha1 kind: Workflow metadata: generateName: workflow-template-devops-java- spec: workflowTemplateRef: name: devops-java
也可以直接在UI界面点击创建,我这里直接在UI界面点击创建。选择刚创建的WorkflowTemplate,点击创建,如下:
然后就会生成一条Workflow,如下:
点进去,可以看到每个具体的步骤,如下
点击每个具体的步骤,可以看日志,如下:
也可以在命令行界面看到Workflow的执行结果,如下:
看完上述内容是否对您有帮助呢?如果还想对相关知识有进一步的了解或阅读更多相关文章,请关注行业资讯频道,感谢您对的支持。