Spark cluster 部署
Spark 框架
Spark与Storm的对比
对于Storm来说:
1、建议在那种需要纯实时,不能忍受1秒以上延迟的场景下使用,比如实时金融系统,要求纯实时进行金融交易和分析
2、此外,如果对于实时计算的功能中,要求可靠的事务机制和可靠性机制,即数据的处理完全精准,一条也不能多,一条也不能少,也可以考虑使用Storm
3、如果还需要针对高峰低峰时间段,动态调整实时计算程序的并行度,以最大限度利用集群资源(通常是在小型公司,集群资源紧张的情况),也可以考虑用Storm
4、如果一个大数据应用系统,它就是纯粹的实时计算,不需要在中间执行SQL交互式查询、复杂的transformation算子等,那么用Storm是比较好的选择
对于Spark Streaming来说:
1、如果对上述适用于Storm的三点,一条都不满足的实时场景,即,不要求纯实时,不要求强大可靠的事务机制,不要求动态调整并行度,那么可以考虑使用Spark Streaming
2、考虑使用Spark Streaming最主要的一个因素,应该是针对整个项目进行宏观的考虑,即,如果一个项目除了实时计算之外,还包括了离线批处理、交互式查询等业务功能,而且实时计算中,可能还会牵扯到高延迟批处理、交互式查询等功能,那么就应该首选Spark生态,用Spark Core开发离线批处理,用Spark SQL开发交互式查询,用Spark Streaming开发实时计算,三者可以无缝整合,给系统提供非常高的可扩展性
Spark Streaming与Storm的优劣分析
事实上,Spark Streaming绝对谈不上比Storm优秀。这两个框架在实时计算领域中,都很优秀,只是擅长的细分场景并不相同。
Spark Streaming仅仅在吞吐量上比Storm要优秀,而吞吐量这一点,也是历来挺Spark Streaming,贬Storm的人着重强调的。但是问题是,是不是在所有的实时计算场景下,都那么注重吞吐量?不尽然。因此,通过吞吐量说Spark Streaming强于Storm,不靠谱。
Storm在实时延迟度上,比Spark Streaming就好多了,前者是纯实时,后者是准实时。而且,Storm的事务机制、健壮性 / 容错性、动态调整并行度等特性,都要比Spark Streaming更加优秀。
Spark Streaming,有一点是Storm绝对比不上的,就是:它位于Spark生态技术栈中,因此Spark Streaming可以和Spark Core、Spark SQL无缝整合,也就意味着,我们可以对实时处理出来的中间数据,立即在程序中无缝进行延迟批处理、交互式查询等操作。这个特点大大增强了Spark Streaming的优势和功能
下载 spark、scala的包
如下操作:
[hadoop@oversea-stable ~]$ wget http://mirrors.hust.edu.cn/apache/spark/spark-2.3.0/spark-2.3.0-bin-hadoop2.7.tgz--2018-06-27 10:07:25-- http://mirrors.hust.edu.cn/apache/spark/spark-2.3.0/spark-2.3.0-bin-hadoop2.7.tgzResolving mirrors.hust.edu.cn (mirrors.hust.edu.cn)... 202.114.18.160Connecting to mirrors.hust.edu.cn (mirrors.hust.edu.cn)|202.114.18.160|:80... connected.HTTP request sent, awaiting response... 200 OKLength: 226128401 (216M) [application/octet-stream]Saving to: 'spark-2.3.0-bin-hadoop2.7.tgz'100%[================================================================================================================>] 226,128,401 45.4KB/s in 68m 12s2018-06-27 11:15:38 (54.0 KB/s) - 'spark-2.3.0-bin-hadoop2.7.tgz' saved [226128401/226128401][hadoop@oversea-stable ~]$[hadoop@oversea-stable ~]$ wget https://scala-lang.org/files/archive/nightly/2.12.x/scala-2.12.5-bin-3995c7e.tgz--2018-06-27 11:50:02-- https://scala-lang.org/files/archive/nightly/2.12.x/scala-2.12.5-bin-3995c7e.tgzResolving scala-lang.org (scala-lang.org)... 128.178.154.159Connecting to scala-lang.org (scala-lang.org)|128.178.154.159|:443... connected.HTTP request sent, awaiting response... 200 OKLength: 20244926 (19M) [application/x-gzip]Saving to: 'scala-2.12.5-bin-3995c7e.tgz'100%[================================================================================================================>] 20,244,926 516KB/s in 4m 39s 2018-06-27 11:54:43 (70.8 KB/s) - 'scala-2.12.5-bin-3995c7e.tgz' saved [20244926/20244926]
配置环境变量
如下操作:
[hadoop@oversea-stable ~]$ tail -4 .bash_profile export SCALA_HOME=/opt/scalaexport SPARK_HOME=/opt/sparkPATH=$JAVA_HOME/bin:$HADOOP_HOME/bin:$HBASE_HOME/bin:$SCALA_HOME/bin:$SPARK_HOME/bin:$PATHexport PATH[hadoop@oversea-stable ~]$
配置并同步scala
操作如下:
[hadoop@oversea-stable ~]$ tar xfz scala-2.12.5-bin-3995c7e.tgz -C /opt/[hadoop@oversea-stable opt]$ ln -s scala-2.12.5-bin-3995c7e scala[hadoop@oversea-stable opt]$ for((i=67;i>=64;i--));do rsync -avzoptlg scala-2.12.5-bin-3995c7e 192.168.20.$i:/opt/ ; done
配置并同步spark
操作如下:
[hadoop@oversea-stable ~]$ tar xfz spark-2.3.0-bin-hadoop2.7.tgz -C /opt/[hadoop@oversea-stable ~]$ cd /opt/[hadoop@oversea-stable opt]$ ln -s spark-2.3.0-bin-hadoop2.7 spark [hadoop@oversea-stable opt]$ cd spark/conf[hadoop@oversea-stable conf]$ pwd/opt/spark/conf[hadoop@oversea-stable conf]$ cp spark-env.sh{.template,}[hadoop@oversea-stable conf]$ vim spark-env.sh[hadoop@oversea-stable conf]$ tail -8 spark-env.shexport SCALA_HOME=/opt/sparkexport JAVA_HOME=/usr/java/latestexport SPARK_MASTER_IP=192.168.20.68export SPARK_WORKER_MEMORY=1024m export HADOOP_CONF_DIR=/opt/hadoop/etc/hadoop export SPARK_DIST_CLASSPATH=$(/opt/hadoop/bin/hadoop classpath)export SPARK_LOCAL_IP=192.168.20.68 #修改为每个node本身的IPexport SPARK_MASTER_HOST=192.168.20.68[hadoop@oversea-stable conf]$ [hadoop@oversea-stable conf]$ cp slaves{.template,} [hadoop@oversea-stable conf]$ vim slaves[hadoop@oversea-stable conf]$ tail -3 slavesopen-stablepermission-stablesp-stable[hadoop@oversea-stable conf]$ [hadoop@oversea-stable conf]$ cd /opt[hadoop@oversea-stable opt]$ for((i=67;i>=64;i--));do rsync -avzoptlg spark-2.3.0-bin-hadoop2.7 192.168.20.$i:/opt/ ; done
启动spark
操作如下所示:
[hadoop@oversea-stable opt]$ cd spark[hadoop@oversea-stable spark]$ sbin/start-slaves.sh open-stable: starting org.apache.spark.deploy.worker.Worker, logging to /opt/spark/logs/spark-hadoop-org.apache.spark.deploy.worker.Worker-1-open-stable.outpermission-stable: starting org.apache.spark.deploy.worker.Worker, logging to /opt/spark/logs/spark-hadoop-org.apache.spark.deploy.worker.Worker-1-permission-stable.outsp-stable: starting org.apache.spark.deploy.worker.Worker, logging to /opt/spark/logs/spark-hadoop-org.apache.spark.deploy.worker.Worker-1-sp1-stable.out[hadoop@oversea-stable spark]$ vim conf/slaves[hadoop@oversea-stable spark]$ sbin/start-slaves.sh open-stable: starting org.apache.spark.deploy.worker.Worker, logging to /opt/spark/logs/spark-hadoop-org.apache.spark.deploy.worker.Worker-1-open-stable.outpermission-stable: starting org.apache.spark.deploy.worker.Worker, logging to /opt/spark/logs/spark-hadoop-org.apache.spark.deploy.worker.Worker-1-permission-stable.out[hadoop@oversea-stable spark]$
验证
(1) 检查log,确认无Error
[hadoop@oversea-stable spark]$ cd logs[hadoop@oversea-stable logs]$ lsspark-hadoop-org.apache.spark.deploy.master.Master-1-oversea-stable.out[hadoop@oversea-stable logs]$
(2) 查看各server 进程状态
[hadoop@oversea-stable logs]$ jps12480 DFSZKFailoverController27522 HMaster6738 Master7301 Jps12123 NameNode12588 ResourceManager[hadoop@oversea-stable logs]$ [hadoop@open-stable logs]$ jps15248 JournalNode15366 NodeManager16248 Jps16169 Worker15131 DataNode18125 QuorumPeerMain22781 HRegionServer[hadoop@open-stable logs]$ [hadoop@permission-stable logs]$ jps12800 QuorumPeerMain24391 NodeManager4647 Jps24152 DataNode4568 Worker2236 HRegionServer24269 JournalNode[hadoop@permission-stable logs]$ [hadoop@sp1-stable logs]$ jps7617 QuorumPeerMain9233 Jps21683 NodeManager21540 JournalNode28966 HRegionServer21451 DataNode8813 Worker[hadoop@sp1-stable logs]$
(3) 运行spark-shell
[hadoop@oversea-stable logs]$ spark-shellSLF4J: Class path contains multiple SLF4J bindings.SLF4J: Found binding in [jar:file:/opt/spark-2.3.0-bin-hadoop2.7/jars/slf4j-log4j12-1.7.16.jar!/org/slf4j/impl/StaticLoggerBinder.class]SLF4J: Found binding in [jar:file:/opt/hadoop-2.9.1/share/hadoop/common/lib/slf4j-log4j12-1.7.25.jar!/org/slf4j/impl/StaticLoggerBinder.class]SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]2018-06-27 15:15:49 WARN NativeCodeLoader:62 - Unable to load native-hadoop library for your platform... using builtin-java classes where applicableSetting default log level to "WARN".To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).Spark context Web UI available at http://oversea-stable:4040Spark context available as 'sc' (master = local[*], app id = local-1530083761130).Spark session available as 'spark'.Welcome to ____ __ / __/__ ___ _____/ /__ _\ \/ _ \/ _ `/ __/ '_/ /___/ .__/\_,_/_/ /_/\_\ version 2.3.0 /_/Using Scala version 2.11.8 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_172)Type in expressions to have them evaluated.Type :help for more information.scala>
(4) 在web 浏览器中查看spark master 的状态