千家信息网

MXBoard中怎么利用MXNet 实现数据可视化

发表于:2025-01-28 作者:千家信息网编辑
千家信息网最后更新 2025年01月28日,本篇文章为大家展示了MXBoard中怎么利用MXNet 实现数据可视化,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。安装教程安装MXNet1pip insta
千家信息网最后更新 2025年01月28日MXBoard中怎么利用MXNet 实现数据可视化

本篇文章为大家展示了MXBoard中怎么利用MXNet 实现数据可视化,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。


安装教程

安装MXNet

1pip install mxnet-cu80 --pre  # Amusi的环境是CUDA8.0

安装MXBoard

1pip install mxboard

安装TensorBoard

1pip install tensorflow-gpu==1.4 tensorboard # Amusi指定了TensorFlow版本

注:要想在浏览器中可视化数据,MXBoard还必须依赖于TensorBoard,因此还需要下载安装TensorFlow和TensorBoard(TensorFlow真的很NB)

测试TensorBoard

1tensorboard --help

若成功安装,则会输出一堆tensorboard的指令提示信息,如下图所示:

测试:利用 MXBoard 来可视化 MXNet 数据

新建Python脚本文件,命名为MXBoard-Test.py

1import mxnet as mx
2from mxboard import SummaryWriter
3
4with SummaryWriter(logdir='./logs') as sw:
5 for i in range(10):
6 # create a normal distribution with fixed mean and decreasing std
7 data = mx.nd.normal(loc=0, scale=10.0/(i+1), shape=(10, 3, 8, 8))
8 sw.add_histogram(tag='norml_dist', values=data, bins=200, global_step=i)

运行该脚本文件,可在同路径下生成logs文件夹,如下图所示:

打开终端,切换到利用TensorBoard可视化

1tensorboard --logdir=./logs --host=127.0.0.1 --port=8888

根据输出提示,将http://127.0.0.1:8888网址复制粘贴到Chrome浏览器中

上述内容就是MXBoard中怎么利用MXNet 实现数据可视化,你们学到知识或技能了吗?如果还想学到更多技能或者丰富自己的知识储备,欢迎关注行业资讯频道。

0