千家信息网

nlp计数法应用于PTB数据集的方法

发表于:2025-01-17 作者:千家信息网编辑
千家信息网最后更新 2025年01月17日,今天小编给大家分享一下nlp计数法应用于PTB数据集的方法的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我
千家信息网最后更新 2025年01月17日nlp计数法应用于PTB数据集的方法

今天小编给大家分享一下nlp计数法应用于PTB数据集的方法的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。

PTB数据集

内容如下:

一行保存一个句子;将稀有单词替换成特殊字符 < unk > ;将具体的数字替换 成"N"

 we 're talking about years ago before anyone heard of asbestos having any questionable properties  there is no asbestos in our products now  neither  nor the researchers who studied the workers were aware of any research on smokers of the kent cigarettes  we have no useful information on whether users are at risk said james a.  of boston 's  cancer institute  dr.  led a team of researchers from the national cancer institute and the medical schools of harvard university and boston university

ptb.py

使用PTB数据集:

由下面这句话,可知用PTB数据集时候,是把所有句子首尾连接了。

words = open(file_path).read().replace('\n', '').strip().split()

ptb.py起到了下载PTB数据集,把数据集存到文件夹某个位置,然后对数据集进行提取的功能,提取出corpus, word_to_id, id_to_word。

import sysimport ossys.path.append('..')try:    import urllib.requestexcept ImportError:    raise ImportError('Use Python3!')import pickleimport numpy as npurl_base = 'https://raw.githubusercontent.com/tomsercu/lstm/master/data/'key_file = {    'train':'ptb.train.txt',    'test':'ptb.test.txt',    'valid':'ptb.valid.txt'}save_file = {    'train':'ptb.train.npy',    'test':'ptb.test.npy',    'valid':'ptb.valid.npy'}vocab_file = 'ptb.vocab.pkl'dataset_dir = os.path.dirname(os.path.abspath(__file__))def _download(file_name):    file_path = dataset_dir + '/' + file_name    if os.path.exists(file_path):        return    print('Downloading ' + file_name + ' ... ')    try:        urllib.request.urlretrieve(url_base + file_name, file_path)    except urllib.error.URLError:        import ssl        ssl._create_default_https_context = ssl._create_unverified_context        urllib.request.urlretrieve(url_base + file_name, file_path)    print('Done')def load_vocab():    vocab_path = dataset_dir + '/' + vocab_file    if os.path.exists(vocab_path):        with open(vocab_path, 'rb') as f:            word_to_id, id_to_word = pickle.load(f)        return word_to_id, id_to_word    word_to_id = {}    id_to_word = {}    data_type = 'train'    file_name = key_file[data_type]    file_path = dataset_dir + '/' + file_name    _download(file_name)    words = open(file_path).read().replace('\n', '').strip().split()    for i, word in enumerate(words):        if word not in word_to_id:            tmp_id = len(word_to_id)            word_to_id[word] = tmp_id            id_to_word[tmp_id] = word    with open(vocab_path, 'wb') as f:        pickle.dump((word_to_id, id_to_word), f)    return word_to_id, id_to_worddef load_data(data_type='train'):    '''        :param data_type: 数据的种类:'train' or 'test' or 'valid (val)'        :return:    '''    if data_type == 'val': data_type = 'valid'    save_path = dataset_dir + '/' + save_file[data_type]    word_to_id, id_to_word = load_vocab()    if os.path.exists(save_path):        corpus = np.load(save_path)        return corpus, word_to_id, id_to_word    file_name = key_file[data_type]    file_path = dataset_dir + '/' + file_name    _download(file_name)    words = open(file_path).read().replace('\n', '').strip().split()    corpus = np.array([word_to_id[w] for w in words])    np.save(save_path, corpus)    return corpus, word_to_id, id_to_wordif __name__ == '__main__':    for data_type in ('train', 'val', 'test'):        load_data(data_type)

使用ptb.py

corpus保存了单词ID列表,id_to_word 是将单词ID转化为单词的字典,word_to_id 是将单词转化为单词ID的字典。

使用ptb.load_data()加载数据。里面的参数 ‘train’、‘test’、‘valid’ 分别对应训练用数据、测试用数据、验证用数据。

import syssys.path.append('..')from dataset import ptbcorpus, word_to_id, id_to_word = ptb.load_data('train')print('corpus size:', len(corpus))print('corpus[:30]:', corpus[:30])print()print('id_to_word[0]:', id_to_word[0])print('id_to_word[1]:', id_to_word[1])print('id_to_word[2]:', id_to_word[2])print()print("word_to_id['car']:", word_to_id['car'])print("word_to_id['happy']:", word_to_id['happy'])print("word_to_id['lexus']:", word_to_id['lexus'])

结果:

corpus size: 929589corpus[:30]: [ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29]id_to_word[0]: aerid_to_word[1]: banknoteid_to_word[2]: berlitzword_to_id['car']: 3856word_to_id['happy']: 4428word_to_id['lexus']: 7426Process finished with exit code 0

计数方法应用于PTB数据集

其实和不用PTB数据集的区别就在于这句话。

corpus, word_to_id, id_to_word = ptb.load_data('train')

下面这句话起降维的效果

word_vecs = U[:, :wordvec_size]

整个代码其实耗时最大的是在下面这个函数上:

W = ppmi(C, verbose=True)

完整代码:

import syssys.path.append('..')import numpy as npfrom common.util import most_similar, create_co_matrix, ppmifrom dataset import ptbwindow_size = 2wordvec_size = 100corpus, word_to_id, id_to_word = ptb.load_data('train')vocab_size = len(word_to_id)print('counting  co-occurrence ...')C = create_co_matrix(corpus, vocab_size, window_size)print('calculating PPMI ...')W = ppmi(C, verbose=True)print('calculating SVD ...')#try:    # truncated SVD (fast!)print("ok")from sklearn.utils.extmath import randomized_svdU, S, V = randomized_svd(W, n_components=wordvec_size, n_iter=5,                             random_state=None)#except ImportError:    # SVD (slow)    # U, S, V = np.linalg.svd(W)word_vecs = U[:, :wordvec_size]querys = ['you', 'year', 'car', 'toyota']for query in querys:    most_similar(query, word_to_id, id_to_word, word_vecs, top=5)

下面这个是用普通的np.linalg.svd(W)做出的结果。

[query] you i: 0.7016294002532959 we: 0.6388039588928223 anybody: 0.5868048667907715 do: 0.5612815618515015 'll: 0.512611985206604[query] year month: 0.6957005262374878 quarter: 0.691483736038208 earlier: 0.6661213636398315 last: 0.6327787041664124 third: 0.6230476498603821[query] car luxury: 0.6767407655715942 auto: 0.6339930295944214 vehicle: 0.5972712635993958 cars: 0.5888376235961914 truck: 0.5693157315254211[query] toyota motor: 0.7481387853622437 nissan: 0.7147319316864014 motors: 0.6946366429328918 lexus: 0.6553674340248108 honda: 0.6343469619750977

下面结果,是用了sklearn模块里面的randomized_svd方法,使用了随机数的 Truncated SVD,仅对奇异值较大的部分进行计算,计算速度比常规的 SVD 快。

calculating SVD ...ok[query] you i: 0.6678948998451233 we: 0.6213737726211548 something: 0.560122013092041 do: 0.5594725608825684 someone: 0.5490139126777649[query] year month: 0.6444296836853027 quarter: 0.6192560791969299 next: 0.6152222156524658 fiscal: 0.5712860226631165 earlier: 0.5641934871673584[query] car luxury: 0.6612467765808105 auto: 0.6166062355041504 corsica: 0.5270425081253052 cars: 0.5142025947570801 truck: 0.5030257105827332[query] toyota motor: 0.7747215628623962 motors: 0.6871038675308228 lexus: 0.6786072850227356 nissan: 0.6618651151657104 mazda: 0.6237337589263916Process finished with exit code 0

以上就是"nlp计数法应用于PTB数据集的方法"这篇文章的所有内容,感谢各位的阅读!相信大家阅读完这篇文章都有很大的收获,小编每天都会为大家更新不同的知识,如果还想学习更多的知识,请关注行业资讯频道。

0