千家信息网

部署statspack工具(二)之解决方案2

发表于:2025-01-24 作者:千家信息网编辑
千家信息网最后更新 2025年01月24日,解决方案二:在emp2的empno列上面创建索引,再执行share_pool_sql_1.sh脚本,查看sp报告8.1在emp2的empno列上创建索引sys@TESTDB12>create inde
千家信息网最后更新 2025年01月24日部署statspack工具(二)之解决方案2

解决方案二:在emp2empno列上面创建索引,再执行share_pool_sql_1.sh脚本,查看sp报告

8.1emp2empno列上创建索引

sys@TESTDB12>create index ind_empno on scott.emp2(empno);

8.2 重新执行share_pool_sql_1.sh脚本并重新开启statspack自动快照

{oracle@Redhat55.cuug.net:/home/oracle/script/bin}$sh share_pool_sql_1.sh

SQL>@?/rdbms/admin/spauto

8.3生成statspack报告

perfstat@TESTDB12>selectsnap_id,snap_time,snap_level from stats$snapshot order by snap_time;

perfstat@TESTDB12>selectsnap_id,snap_time,snap_level from stats$snapshot order by snap_time;

SNAP_ID SNAP_TIME SNAP_LEVEL

---------- -------------------

1 28-JUL-14 7

11 28-JUL-14 7

21 28-JUL-14 7

31 28-JUL-14 7

41 29-JUL-14 7

51 29-JUL-14 7

61 29-JUL-14 7

71 29-JUL-14 7

81 29-JUL-14 7

91 29-JUL-14 7

101 29-JUL-14 7

111 29-JUL-14 7

121 29-JUL-14 7

131 29-JUL-14 7

141 29-JUL-14 7

151 29-JUL-14 7

161 29-JUL-14 7

171 29-JUL-14 7

181 29-JUL-14 7

191 29-JUL-14 7

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Enter value for begin_snap: 131

Enter value for end_snap: 141

Enter value for report_name:

Specify the Begin and End Snapshot Ids

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Enter value for begin_snap: 141

Enter value for end_snap: 151

Enter value for report_name:

Specify the Begin and End Snapshot Ids

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Enter value for begin_snap: 151

Enter value for end_snap: 161

Enter value for report_name:

Specify the Begin and End Snapshot Ids

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Enter value for begin_snap: 161

Enter value for end_snap: 171

Enter value for report_name:

8.4通过新生成的4statspack报告对比各个时间段的数据缓冲区的命中率和库缓冲区的命中率:

时间

Buffer Hit%

Library Hit%

05:19:01~ 05:34:01

99.99

89.78

05:34:01 ~05:49:00

99.99

89.72

05:49:00 ~ 06:04:05

99.98

89.45

06:04:05 ~06:13:00

99.95

88.79

emp2empno列上创建索引后通过对比发现数据缓冲区的命中率明显得到了改善,达到了的99%以上;而库缓冲区的命中率也得到小幅度提升

8.5查看Top 5 Timed Events找出4 个报告中各个时间段跟磁盘I/O相关的等待事件

时间

name

Wait(s)

Time(s)

05:19:01~ 05:34:01

log file parallel write

45,110

54


log file sync

6,240

46


os thread startup

34

5


control file parallel write

332

3

05:34:01 ~05:49:00

log file parallel write

48,413

36


log file sync

3,563

28


os thread startup

33

5


db file sequential read

2,018

2

05:49:00 ~ 06:04:05

log file parallel write

49,564

23


log file sync

455

15


db file sequential read

3,955

9


os thread startup

39

6

06:04:05 ~06:13:00

log file parallel write

28,273

8


db file sequential read

2,928

5


log file sync

231

4


os thread startup

21

3

通过4个报告的对比Top 5 Timed Eventsdirect path read不见了,说明解决了全表扫描等待I\O的问题;但log file parallel writelog file sync的磁盘I/O都还比较大,而且新增了control fileparallel write I/O,没有什么大的耗资源的任务,说明系统性能得以提升

8.6造成物理读最大的前几个sql语句在报告中未找到,用sql语句查询得出这些语句:select sql_text from v$sqlwhere disk_reads=(select max(disk_reads) from v$sql);

时间

Executions

Rows per Exec

Sql语句

05:19:01~ 05:34:01

10,840

16.1

select /*+ rule */ bucket, endpoint, col#, epvalue from histgrm$

where obj#=:1 and intcol#=:2 and row#=:3 order by bucket









05:34:01 ~05:49:00

12,565

16.1

select /*+ rule */ bucket, endpoint, col#, epvalue from histgrm$

where obj#=:1 and intcol#=:2 and row#=:3 order by bucket





05:49:00 ~ 06:04:05

15,112

16.0

select /*+ rule */ bucket, endpoint, col#, epvalue from histgrm$

where obj#=:1 and intcol#=:2 and row#=:3 order by bucket





06:04:05 ~06:13:00

20,814

16.4

select /*+ rule */ bucket, endpoint, col#, epvalue from histgrm$

where obj#=:1 and intcol#=:2 and row#=:3 order by bucket





通过对比各时间段最消耗资源的SQL语句,发现仍有相同或相似的执行计划,应该使用绑定变量,来提高执行效率。

生成语句的执行计划: set autotrace traceonly select * from scott.emp2

idle>select *from scott.emp2 where empno=1484;

Execution Plan

----------------------------------------------------------

Plan hash value:2918945472

-----------------------------------------------------------------------------------------

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

-----------------------------------------------------------------------------------------

| 0 | SELECT STATEMENT | | 1 | 48 | 4 (0)| 00:00:01 |

| 1 | TABLE ACCESS BY INDEX ROWID| EMP2 | 1 | 48 | 4 (0)| 00:00:01 |

|* 2 | INDEX RANGE SCAN |IND_EMPNO | 1 | | 3 (0)| 00:00:01 |

-----------------------------------------------------------------------------------------

PredicateInformation (identified by operation id):

---------------------------------------------------

2 - access("EMPNO"=1484)

Statistics

----------------------------------------------------------

55 recursive calls

0 db block gets

78 consistent gets

4 physical reads

0 redo size

1033 bytes sent via SQL*Net to client

523 bytes received via SQL*Net from client

2 SQL*Net roundtrips to/from client

7 sorts (memory)

0 sorts (disk)

1 rows processed

8.7查看Buffer Pool Advisory并把Buffer cache的大小设置为推荐的大小

05:19:01~ 05:34:01时间段的Buffer PoolAdvisory

Est

Phys Estimated Est

Size for Size Buffers Read Phys Reads Est Phys % dbtime

P Est (M) Factr (thousands) Factr (thousands) Read Time for Rds

--- -------- ----------------- ------ -------------- ------------ --------

D 4 .1 0 8.0 261 345 5.2

D 8 .2 1 1.1 35 37 .6

D 12 .3 1 1.1 34 36 .5

D 16 .3 2 1.0 33 35 .5

D 20 .4 2 1.0 33 34 .5

D 24 .5 3 1.0 33 34 .5

D 28 .6 3 1.0 33 34 .5

D 32 .7 4 1.0 33 33 .5

D 36 .8 4 1.0 33 33 .5

D 40 .8 5 1.0 32 33 .5

D 44 .9 5 1.0 32 33 .5

D 48 1.0 6 1.0 32 33 .5

D 52 1.1 6 1.0 32 33 .5

D 56 1.2 7 1.0 32 33 .5

D 60 1.3 7 1.0 32 33 .5

D 64 1.3 8 1.0 32 33 .5

D 68 1.4 8 1.0 32 33 .5

D 72 1.5 9 1.0 32 33 .5

D 76 1.6 9 1.0 32 33 .5

D 80 1.7 10 1.0 32 33 .5

05:34:01 ~05:49:00时间段的Buffer PoolAdvisory

Est

Phys Estimated Est

Size for Size Buffers Read Phys Reads Est Phys % dbtime

P Est (M) Factr (thousands) Factr (thousands) Read Time for Rds

--- -------- ----------------- ------ -------------- ------------ --------

D 4 .1 0 7.8 273 357 5.1

D 8 .2 1 1.1 37 39 .6

D 12 .3 1 1.0 37 38 .5

D 16 .3 2 1.0 36 37 .5

D 20 .4 2 1.0 35 37 .5

D 24 .5 3 1.0 35 36 .5

D 28 .6 3 1.0 35 36 .5

D 32 .7 4 1.0 35 36 .5

D 36 .8 4 1.0 35 36 .5

D 40 .8 5 1.0 35 36 .5

D 44 .9 5 1.0 35 36 .5

D 48 1.0 6 1.0 35 36 .5

D 52 1.1 6 1.0 35 36 .5

D 56 1.2 7 1.0 35 36 .5

D 60 1.3 7 1.0 35 36 .5

D 64 1.3 8 1.0 35 36 .5

D 68 1.4 8 1.0 35 36 .5

D 72 1.5 9 1.0 35 36 .5

D 76 1.6 9 1.0 35 36 .5

D 80 1.7 10 1.0 35 36 .5

05:49:00 ~ 06:04:05时间段的Buffer PoolAdvisory

Est

Phys Estimated Est

Size for Size Buffers Read Phys Reads Est Phys % dbtime

P Est (M) Factr (thousands) Factr (thousands) Read Time for Rds

--- -------- ----------------- ------ -------------- ------------ --------

D 4 .1 0 7.6 302 438 6.0

D 8 .2 1 1.1 42 49 .7

D 12 .3 1 1.0 41 48 .7

D 16 .3 2 1.0 40 47 .6

D 20 .4 2 1.0 40 46 .6

D 24 .5 3 1.0 40 46 .6

D 28 .6 3 1.0 40 46 .6

D 32 .7 4 1.0 40 46 .6

D 36 .8 4 1.0 40 46 .6

D 40 .8 5 1.0 40 46 .6

D 44 .9 5 1.0 40 46 .6

D 48 1.0 6 1.0 40 46 .6

D 52 1.1 6 1.0 40 46 .6

D 56 1.2 7 1.0 40 46 .6

D 60 1.3 7 1.0 40 46 .6

D 64 1.3 8 1.0 40 46 .6

D 68 1.4 8 1.0 40 46 .6

D 72 1.5 9 1.0 40 46 .6

D 76 1.6 9 1.0 40 46 .6

D 80 1.7 10 1.0 40 46 .6

06:04:05 ~06:13:00时间段的Buffer PoolAdvisory

Est

Phys Estimated Est

Size for Size Buffers Read Phys Reads Est Phys % dbtime

P Est (M) Factr (thousands) Factr (thousands) Read Time for Rds

--- -------- ----------------- ------ -------------- ------------ --------

D 4 .1 0 7.6 338 497 6.6

D 8 .2 1 1.0 47 56 .7

D 12 .3 1 1.0 46 55 .7

D 16 .3 2 1.0 45 54 .7

D 20 .4 2 1.0 45 54 .7

D 24 .5 3 1.0 45 54 .7

D 28 .6 3 1.0 45 53 .7

D 32 .7 4 1.0 45 53 .7

D 36 .8 4 1.0 45 53 .7

D 40 .8 5 1.0 45 53 .7

D 44 .9 5 1.0 45 53 .7

D 48 1.0 6 1.0 45 53 .7

D 52 1.1 6 1.0 45 53 .7

D 56 1.2 7 1.0 45 53 .7

D 60 1.3 7 1.0 45 53 .7

D 64 1.3 8 1.0 45 53 .7

D 68 1.4 8 1.0 45 53 .7

D 72 1.5 9 1.0 45 53 .7

D 76 1.6 9 1.0 45 53 .7

D 80 1.7 10 1.0 45 53 .7

通过以上4个时间段中Buffer Pool Advisory建议可以看的出来,对于增加Buffer cache的大小对性能的影响并不明显。

8.8查看Time Model System Stats

05:19:01~ 05:34:01时间段Time Model System Stats

Statistic Time (s) % DB time

----------------------------------- -------------------- ---------

DB CPU 440.5 119.9

parse time elapsed 158.5 43.1

sql execute elapsed time 145.1 39.5

hard parse elapsed time 135.0 36.8

connection management call elapsed 108.8 29.6

PL/SQL execution elapsed time 5.7 1.6

hard parse (sharing criteria) elaps 1.3 .3

hard parse (bind mismatch) elapsed 1.2 .3

PL/SQL compilation elapsed time 0.8 .2

repeated bind elapsed time 0.4 .1

sequence load elapsed time 0.1 .0

DB time 367.4

background elapsed time 75.1

background cpu time 20.1

05:34:01 ~05:49:00时间段Time Model System Stats

Statistic Time (s) % DB time

----------------------------------- -------------------- ---------

DB CPU 455.9 124.3

parse time elapsed 155.5 42.4

sql execute elapsed time 149.9 40.9

hard parse elapsed time 128.2 35.0

connection management call elapsed 104.6 28.5

PL/SQL execution elapsed time 6.8 1.9

hard parse (sharing criteria) elaps 2.5 .7

hard parse (bind mismatch) elapsed 2.4 .7

PL/SQL compilation elapsed time 0.8 .2

repeated bind elapsed time 0.5 .1

sequence load elapsed time 0.3 .1

DB time 366.8

background elapsed time 54.4

background cpu time 20.1

05:49:00 ~ 06:04:05时间段Time Model System Stats

Statistic Time (s) % DB time

----------------------------------- -------------------- ---------

DB CPU 463.3 122.2

parse time elapsed 160.9 42.4

sql execute elapsed time 158.6 41.9

hard parse elapsed time 133.8 35.3

connection management call elapsed 103.6 27.3

PL/SQL execution elapsed time 7.3 1.9

hard parse (sharing criteria) elaps 2.1 .6

hard parse (bind mismatch) elapsed 1.9 .5

PL/SQL compilation elapsed time 1.1 .3

repeated bind elapsed time 0.5 .1

sequence load elapsed time 0.2 .0

DB time 379.0

background elapsed time 52.7

background cpu time 23.0

06:04:05 ~06:13:00时间段Time Model System Stats

Statistic Time (s) % DB time

----------------------------------- -------------------- ---------

DB CPU 269.2 119.5

parse time elapsed 105.7 46.9

sql execute elapsed time 102.9 45.6

hard parse elapsed time 89.9 39.9

connection management call elapsed 58.2 25.8

PL/SQL execution elapsed time 4.0 1.8

hard parse (sharing criteria) elaps 2.0 .9

hard parse (bind mismatch) elapsed 1.6 .7

PL/SQL compilation elapsed time 1.1 .5

repeated bind elapsed time 0.6 .3

sequence load elapsed time 0.1 .1

DB time 225.4

background elapsed time 19.6

background cpu time 12.2

通过对比4个报告各个时间段中的Time Model System Stats,发现产生的硬解析明显增加了。

8.9查看Latch Sleep breakdown

05:19:01~ 05:34:01时间段的Latch Sleep breakdown

Latch Name Requests Misses Sleeps Gets

-------------------------- --------------- ------------ ----------- -----------

shared pool 3,787,761 4 4 0

05:34:01 ~05:49:00时间段的Latch Sleep breakdown

Latch Name Requests Misses Sleeps Gets

-------------------------- --------------- ------------ ----------- -----------

shared pool 4,107,841 5 5 0

JS Sh mem access 3 1 1 0

enqueue hash chains 320,877 1 1 0

05:49:00 ~ 06:04:05时间段的Latch Sleep breakdown

Latch Name Requests Misses Sleeps Gets

-------------------------- --------------- ------------ ----------- -----------

shared pool 4,257,852 8 8 0

row cache objects 3,956,966 3 3 0

call allocation 110,566 1 1 0

redo allocation 99,927 1 1 0

06:04:05 ~06:13:00时间段的Latch Sleep breakdown

Latch Name Requests Misses Sleeps Gets

-------------------------- --------------- ------------ ----------- -----------

shared pool 2,595,386 6 6 0

row cache objects 2,500,734 1 1 0

通过以上4sp报告各个时间段的Latch Sleepbreakdown的内容,发现cache bufferslru chain已经没有了,但是shared pool次数上来了。


0