千家信息网

(版本定制)第16课:Spark Streaming源码解读之数据清理内幕彻底解密

发表于:2025-02-01 作者:千家信息网编辑
千家信息网最后更新 2025年02月01日,本期内容:1、Spark Streaming元数据清理详解2、Spark Streaming元数据清理源码解析一、如何研究Spark Streaming元数据清理操作DStream的时候会产生元数据,
千家信息网最后更新 2025年02月01日(版本定制)第16课:Spark Streaming源码解读之数据清理内幕彻底解密

本期内容:

1、Spark Streaming元数据清理详解

2、Spark Streaming元数据清理源码解析


一、如何研究Spark Streaming元数据清理

  1. 操作DStream的时候会产生元数据,所以要解决RDD的数据清理工作就一定要从DStream入手。因为DStream是RDD的模板,DStream之间有依赖关系。
    DStream的操作产生了RDD,接收数据也靠DStream,数据的输入,数据的计算,输出整个生命周期都是由DStream构建的。由此,DStream负责RDD的整个生命周期。因此研究的入口的是DStream。

  2. 基于Kafka数据来源,通过Direct的方式访问Kafka,DStream随着时间的进行,会不断的在自己的内存数据结构中维护一个HashMap,HashMap维护的就是时间窗口,以及时间窗口下的RDD.按照Batch Duration来存储RDD以及删除RDD.

  3. Spark Streaming本身是一直在运行的,在自己计算的时候会不断的产生RDD,例如每秒Batch Duration都会产生RDD,除此之外可能还有累加器,广播变量。由于不断的产生这些对象,因此Spark Streaming有自己的一套对象,元数据以及数据的清理机制。

  4. Spark Streaming对RDD的管理就相当于JVM的GC


二、源码解析

Spark Streaming是通过我们设定的Batch Durations来不断的产生RDD,Spark Streaming清理元数据跟时钟有关,因为数据是周期性的产生,所以肯定是周期性的释放,这些都跟JobGenerator有关,所以我们先从这开始研究。


1、RecurringTimer: 消息循环器将消息不断的发送给EventLoop

= RecurringTimer(...millisecondslongTime => .post((Time(longTime))))

2、eventLoop:onReceive接收到消息


(): = synchronized {(!= ) = EventLoop[JobGeneratorEvent]() {(event: JobGeneratorEvent): = processEvent(event)(e: ): = {      jobScheduler.reportError(e)    }  }.start()(.) {    restart()  } {    startFirstTime()  }}

3、在processEvent中接收清理元数据消息


/** Processes all events */private def processEvent(event: JobGeneratorEvent) {  logDebug("Got event " + event)  event match {case GenerateJobs(time) => generateJobs(time)case ClearMetadata(time) => clearMetadata(time) //清理元数据case DoCheckpoint(time, clearCheckpointDataLater) =>      doCheckpoint(time, clearCheckpointDataLater)case ClearCheckpointData(time) => clearCheckpointData(time) //清理checkpoint  }}

具体的方法实现内容就不再这里说,我们进一步分析下这些清理动作是在什么时候被调用的,在Spark Streaming应用程序中,最终Job是交给JobHandler来执行的,所以我们分析下JobHandler


private class JobHandler(job: Job) extends Runnable with Logging {import JobScheduler._def run() {try {val formattedTime = UIUtils.formatBatchTime(          job.time.milliseconds, ssc.graph.batchDuration.milliseconds, showYYYYMMSS = false)val batchUrl = s"/streaming/batch/?id=${job.time.milliseconds}"val batchLinkText = s"[output operation ${job.outputOpId}, batch time ${formattedTime}]"ssc.sc.setJobDescription(s"""Streaming job from $batchLinkText""")        ssc.sc.setLocalProperty(BATCH_TIME_PROPERTY_KEY, job.time.milliseconds.toString)        ssc.sc.setLocalProperty(OUTPUT_OP_ID_PROPERTY_KEY, job.outputOpId.toString)// We need to assign `eventLoop` to a temp variable. Otherwise, because        // `JobScheduler.stop(false)` may set `eventLoop` to null when this method is running, then        // it's possible that when `post` is called, `eventLoop` happens to null.var _eventLoop = eventLoopif (_eventLoop != null) {          _eventLoop.post(JobStarted(job, clock.getTimeMillis()))// Disable checks for existing output directories in jobs launched by the streaming          // scheduler, since we may need to write output to an existing directory during checkpoint          // recovery; see SPARK-4835 for more details.PairRDDFunctions.disableOutputSpecValidation.withValue(true) {            job.run()          }          _eventLoop = eventLoopif (_eventLoop != null) {_eventLoop.post(JobCompleted(job, clock.getTimeMillis()))          }        } else {// JobScheduler has been stopped.}      } finally {        ssc.sc.setLocalProperty(JobScheduler.BATCH_TIME_PROPERTY_KEY, null)        ssc.sc.setLocalProperty(JobScheduler.OUTPUT_OP_ID_PROPERTY_KEY, null)      }    }  }}

当Job完成的时候,会发JobCompleted消息给onReceive,通过processEvent来执行具体的方法


private def processEvent(event: JobSchedulerEvent) {try {    event match {case JobStarted(job, startTime) => handleJobStart(job, startTime)case JobCompleted(job, completedTime) => handleJobCompletion(job, completedTime)case ErrorReported(m, e) => handleError(m, e)    }  } catch {case e: Throwable =>      reportError("Error in job scheduler", e)  }}
private def handleJobCompletion(job: Job, completedTime: Long) {val jobSet = jobSets.get(job.time)  jobSet.handleJobCompletion(job)  job.setEndTime(completedTime)listenerBus.post(StreamingListenerOutputOperationCompleted(job.toOutputOperationInfo))  logInfo("Finished job " + job.id + " from job set of time " + jobSet.time)if (jobSet.hasCompleted) {jobSets.remove(jobSet.time)jobGenerator.onBatchCompletion(jobSet.time)    logInfo("Total delay: %.3f s for time %s (execution: %.3f s)".format(      jobSet.totalDelay / 1000.0, jobSet.time.toString,jobSet.processingDelay / 1000.0))listenerBus.post(StreamingListenerBatchCompleted(jobSet.toBatchInfo))  }  job.result match {case Failure(e) =>      reportError("Error running job " + job, e)case _ =>  }}

通过jobGenerator.onBatchCompletion来清理元数据


/** * Callback called when a batch has been completely processed. */def onBatchCompletion(time: Time) {eventLoop.post(ClearMetadata(time))}

到这里Spark Streaming清理元数据的步骤基本上完成了

0