千家信息网

怎么实现pandas对齐运算

发表于:2025-01-19 作者:千家信息网编辑
千家信息网最后更新 2025年01月19日,这篇文章主要讲解了"怎么实现pandas对齐运算",文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习"怎么实现pandas对齐运算"吧!1.算术运算和数据对齐
千家信息网最后更新 2025年01月19日怎么实现pandas对齐运算

这篇文章主要讲解了"怎么实现pandas对齐运算",文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习"怎么实现pandas对齐运算"吧!

1.算术运算和数据对齐

import numpy as npimport pandas as pd

1.1 Series

a1 = pd.Series(np.arange(4),index=['a','b','c','d'])a2 = pd.Series(np.arange(5),index=['a','r','c','u','k'])print(a1)print("="*20)print(a2)

a 0
b 1
c 2
d 3
dtype: int32
====================
a 0
r 1
c 2
u 3
k 4
dtype: int32

有相同的索引值相加后结果变为浮点数,不相同则返回NAN值。

a1 + a2

a 0.0
b NaN
c 4.0
d NaN
k NaN
r NaN
u NaN
dtype: float64

1.2 DataFrame

a3 = pd.DataFrame(np.arange(12).reshape(3,4),index=['a','b','c'],columns=['q','w','e','r'])a4 = pd.DataFrame(np.arange(9).reshape(3,3),index=['a','u','c'],columns=['m','e','r'])print(a3)print("="*20)print(a4)

q w e r
a 0 1 2 3
b 4 5 6 7
c 8 9 10 11
====================
m e r
a 0 1 2
u 3 4 5
c 6 7 8

只有行和列索引都相同的才能运算,否则返回NAN值

a3 + a4

e m q r w
a 3.0 NaN NaN 5.0 NaN
b NaN NaN NaN NaN NaN
c 17.0 NaN NaN 19.0 NaN
u NaN NaN NaN NaN NaN

2.使用填充值的算术方法

2.1 Series

a1 = pd.Series(np.arange(4),index=['a','b','c','d'])a2 = pd.Series(np.arange(5),index=['a','r','c','u','k'])print(a1)print("="*20)print(a2)print("="*20)print(a1 + a2)    #有相同的索引值相加后结果变为浮点数,不相同索引值相加则返回NAN

a 0
b 1
c 2
d 3
dtype: int32
====================
a 0
r 1
c 2
u 3
k 4
dtype: int32
====================
a 0.0
b NaN
c 4.0
d NaN
k NaN
r NaN
u NaN
dtype: float64

使用填充值,不会返回NAN值,如果a1,a2的索引值相同则将对应的值作算术运算,如果不同则作为一行新的数据,形成一个新的Series索引

a1.add(a2,fill_value=0)  #a1+a2 忽略NAN影响

a 0.0
b 1.0
c 4.0
d 3.0
k 4.0
r 1.0
u 3.0
dtype: float64

2.2 DataFrame

a3 = pd.DataFrame(np.arange(12).reshape(3,4),index=['a','b','c'],columns=['q','w','e','r'])a4 = pd.DataFrame(np.arange(9).reshape(3,3),index=['a','u','c'],columns=['m','e','r'])print(a3)print("="*20)print(a4)print("="*20)print(a3 + a4)   #只有行索引和列索引都相同的才能运算,否则返回NAN

q w e r
a 0 1 2 3
b 4 5 6 7
c 8 9 10 11
====================
m e r
a 0 1 2
u 3 4 5
c 6 7 8
====================
e m q r w
a 3.0 NaN NaN 5.0 NaN
b NaN NaN NaN NaN NaN
c 17.0 NaN NaN 19.0 NaN
u NaN NaN NaN NaN NaN

只有当两个DataFrame索引独有的行和列独有的索引对应的值才返回NAN,例如下面的 b行m列返回NAN值,其索引值是由a3独有的b和a4独有的m组成的,行和列其中之一的索引值不是独有的,则返回对应DataFrame中的值,例如a行q列中的是a3,a4都有的,返回a3中 a行q列对应的值。

#使用填充值,a3.add(a4,fill_value=0)

e m q r w
a 3.0 0.0 0.0 5.0 1.0
b 6.0 NaN 4.0 7.0 5.0
c 17.0 6.0 8.0 19.0 9.0
u 4.0 3.0 NaN 5.0 NaN

r 开头字母表示会翻转参数

1/a3

q w e r
a inf 1.000000 0.500000 0.333333
b 0.250 0.200000 0.166667 0.142857
c 0.125 0.111111 0.100000 0.090909

a3.rdiv(1)   #翻转div(除法),结果等同 1/a3

q w e r
a inf 1.000000 0.500000 0.333333
b 0.250 0.200000 0.166667 0.142857
c 0.125 0.111111 0.100000 0.090909

reindex指定索引和缺失值

将a3的列索引替换为a4的列索引 ,如果索引名字不相同,则返回NAN(不改变原DataFrame索引)

a3.reindex(columns=a4.columns))

m e r
a NaN 2 3
b NaN 6 7
c NaN 10 11

#对NAN进行填充a3.reindex(columns=a4.columns,fill_value=66)  #把所有的NAN替换为66(可指定任意值)

m e r
a 66 2 3
b 66 6 7
c 66 10 11

3.DataFrame和Series混合运算

3.1 按行广播

arr = np.arange(12).reshape(3,4)arr

array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])

取出第一行

arr[0] #取出第一行

array([0, 1, 2, 3])

每一行都减去第一行(按行进行广播)

arr - arr[0] #每一行都减去第一行(按行进行广播)

array([[0, 0, 0, 0],
[4, 4, 4, 4],
[8, 8, 8, 8]])

a3 = pd.DataFrame(np.arange(12).reshape(3,4),index=['a','b','c'],columns=['q','w','e','r'])a3

q w e r
a 0 1 2 3
b 4 5 6 7
c 8 9 10 11

位置索引 iloc[m,n] 第一个参数m表示行,第二个参数n表示列

s1 = a3.iloc[0]   #取出第一行s1

q 0
w 1
e 2
r 3
Name: a, dtype: int32

每一行都减去第一行(按行进行广播)

a3-s1    #每一行都减去第一行(按行进行广播)

q w e r
a 0 0 0 0
b 4 4 4 4
c 8 8 8 8

3.2 按列广播

取出q这一列

s2 = a3['q']  #取出q这一列s2

a 0
b 4
c 8
Name: q, dtype: int32

默认是行axis=1,指定axis='index'或axis=0,按列进行广播(a3所有列分别减去第q列)

a3.sub(s2,axis='index')  #默认是行axis=1,指定axis='index'(或axis=0),按列进行广播(a3所有列分别减去第q列)

q w e r
a 0 1 2 3
b 0 1 2 3
c 0 1 2 3

a3.sub(s2,axis=0)  #默认是行axis=1,指定axis=0(或)axis='index',按列进行广播(a3所有列分别减去第q列)

q w e r
a 0 1 2 3
b 0 1 2 3
c 0 1 2 3

a3.sub(s2)  #默认情况 axis=1

a b c e q r w
a NaN NaN NaN NaN NaN NaN NaN
b NaN NaN NaN NaN NaN NaN NaN
c NaN NaN NaN NaN NaN NaN NaN

感谢各位的阅读,以上就是"怎么实现pandas对齐运算"的内容了,经过本文的学习后,相信大家对怎么实现pandas对齐运算这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是,小编将为大家推送更多相关知识点的文章,欢迎关注!

0