MySQL索引优化规则是什么
这篇文章将为大家详细讲解有关MySQL索引优化规则是什么,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。
今天mysql教程栏目为大家介绍MySQL的索引优化规则。
前言
- 索引的相信大家都听说过,但是真正会用的又有几人?平时工作中写SQL真的会考虑到这条SQL如何能够用上索引,如何能够提升执行效率?
- 此篇文章详细的讲述了索引优化的几个原则,只要在工作中能够随时应用到,相信你写出的SQL一定是效率最高,最牛逼的。
- 文章的脑图如下:
索引优化规则
1、like语句的前导模糊查询不能使用索引
select * from doc where title like '%XX'; --不能使用索引select * from doc where title like 'XX%'; --非前导模糊查询,可以使用索引复制代码
- 因为页面搜索严禁左模糊或者全模糊,如果需要可以使用搜索引擎来解决。
2、union、in、or 都能够命中索引,建议使用 in
union
能够命中索引,并且MySQL 耗费的 CPU 最少。
select * from doc where status=1union allselect * from doc where status=2;复制代码
in
能够命中索引,查询优化耗费的 CPU 比union all
多,但可以忽略不计,一般情况下建议使用in
。
select * from doc where status in (1, 2);复制代码
or
新版的 MySQL 能够命中索引,查询优化耗费的 CPU 比in
多,不建议频繁用or
。
select * from doc where status = 1 or status = 2复制代码
- 补充:有些地方说在
where
条件中使用or
,索引会失效,造成全表扫描,这是个误区:
①要求
where
子句使用的所有字段,都必须建立索引;②如果数据量太少,mysql制定执行计划时发现全表扫描比索引查找更快,所以会不使用索引;
③确保mysql版本
5.0
以上,且查询优化器开启了index_merge_union=on
, 也就是变量optimizer_switch
里存在index_merge_union
且为on
。
3、负向条件查询不能使用索引
负向条件有:
!=
、<>
、not in
、not exists
、not like
等。例如下面SQL语句:
select * from doc where status != 1 and status != 2;复制代码
- 可以优化为 in 查询:
select * from doc where status in (0,3,4);复制代码
4、联合索引最左前缀原则
如果在
(a,b,c)
三个字段上建立联合索引,那么他会自动建立a
|(a,b)
|(a,b,c)
组索引。登录业务需求,SQL语句如下:
select uid, login_time from user where login_name=? andpasswd=?复制代码
- 可以建立
(login_name, passwd)
的联合索引。因为业务上几乎没有passwd
的单条件查询需求,而有很多login_name
的单条件查询需求,所以可以建立(login_name, passwd)
的联合索引,而不是(passwd, login_name
)。
- 建立联合索引的时候,区分度最高的字段在最左边
- 存在非等号和等号混合判断条件时,在建立索引时,把等号条件的列前置。如
where a>? and b=?
,那么即使a
的区分度更高,也必须把b
放在索引的最前列。
- 最左前缀查询时,并不是指SQL语句的where顺序要和联合索引一致。
- 下面的 SQL 语句也可以命中
(login_name, passwd)
这个联合索引:
select uid, login_time from user where passwd=? andlogin_name=?复制代码
- 但还是建议
where
后的顺序和联合索引一致,养成好习惯。
- 假如
index(a,b,c)
,where a=3 and b like 'abc%' and c=4
,a
能用,b
能用,c
不能用。
5、不能使用索引中范围条件右边的列(范围列可以用到索引),范围列之后列的索引全失效
- 范围条件有:
<、<=、>、>=、between
等。 - 索引最多用于一个范围列,如果查询条件中有两个范围列则无法全用到索引。
- 假如有联合索引
(empno、title、fromdate)
,那么下面的 SQL 中emp_no
可以用到索引,而title
和from_date
则使用不到索引。
select * from employees.titles where emp_no < 10010' and title='Senior Engineer'and from_date between '1986-01-01' and '1986-12-31'复制代码
6、不要在索引列上面做任何操作(计算、函数),否则会导致索引失效而转向全表扫描
- 例如下面的 SQL 语句,即使
date
上建立了索引,也会全表扫描:
select * from doc where YEAR(create_time) <= '2016';复制代码
- 可优化为值计算,如下:
select * from doc where create_time <= '2016-01-01';复制代码
- 比如下面的 SQL 语句:
select * from order where date < = CURDATE();复制代码
- 可以优化为:
select * from order where date < = '2018-01-2412:00:00';复制代码
7、强制类型转换会全表扫描
- 字符串类型不加单引号会导致索引失效,因为mysql会自己做类型转换,相当于在索引列上进行了操作。
- 如果
phone
字段是varchar
类型,则下面的 SQL 不能命中索引。
select * from user where phone=13800001234复制代码
- 可以优化为:
select * from user where phone='13800001234';复制代码
8、更新十分频繁、数据区分度不高的列不宜建立索引
更新会变更 B+ 树,更新频繁的字段建立索引会大大降低数据库性能。
"性别"这种区分度不大的属性,建立索引是没有什么意义的,不能有效过滤数据,性能与全表扫描类似。
一般区分度在80%以上的时候就可以建立索引,区分度可以使用
count(distinct(列名))/count(*)
来计算。
9、利用覆盖索引来进行查询操作,避免回表,减少select * 的使用
- 覆盖索引:查询的列和所建立的索引的列个数相同,字段相同。
- 被查询的列,数据能从索引中取得,而不用通过行定位符 row-locator 再到 row 上获取,即"被查询列要被所建的索引覆盖",这能够加速查询速度。
- 例如登录业务需求,SQL语句如下。
Select uid, login_time from user where login_name=? and passwd=?复制代码
- 可以建立
(login_name, passwd, login_time)
的联合索引,由于login_time
已经建立在索引中了,被查询的uid
和login_time
就不用去row
上获取数据了,从而加速查询。
10、索引不会包含有NULL值的列
- 只要列中包含有NULL值都将不会被包含在索引中,复合索引中只要有一列含有
NULL
值,那么这一列对于此复合索引就是无效的。所以我们在数据库设计时,尽量使用not null
约束以及默认值。
11、is null, is not null无法使用索引
12、如果有order by、group by的场景,请注意利用索引的有序性
order by
最后的字段是组合索引的一部分,并且放在索引组合顺序的最后,避免出现file_sort 的情况,影响查询性能。
- 例如对于语句
where a=? and b=? order by c
,可以建立联合索引(a,b,c)
。
- 如果索引中有范围查找,那么索引有序性无法利用,如
WHERE a>10 ORDER BY b;
,索引(a,b)
无法排序。
13、使用短索引(前缀索引)
对列进行索引,如果可能应该指定一个前缀长度。例如,如果有一个
CHAR(255)
的列,如果该列在前10
个或20
个字符内,可以做到既使得前缀索引的区分度接近全列索引,那么就不要对整个列进行索引。因为短索引不仅可以提高查询速度而且可以节省磁盘空间和I/O操作,减少索引文件的维护开销。可以使用count(distinct leftIndex(列名, 索引长度))/count(*)
来计算前缀索引的区分度。但缺点是不能用于
ORDER BY
和GROUP BY
操作,也不能用于覆盖索引。不过很多时候没必要对全字段建立索引,根据实际文本区分度决定索引长度即可。
14、利用延迟关联或者子查询优化超多分页场景
- MySQL 并不是跳过
offset
行,而是取offset+N
行,然后返回放弃前 offset 行,返回 N 行,那当 offset 特别大的时候,效率就非常的低下,要么控制返回的总页数,要么对超过特定阈值的页数进行 SQL 改写。 - 示例如下,先快速定位需要获取的
id
段,然后再关联:
selecta.* from 表1 a,(select id from 表1 where 条件 limit100000,20 ) b where a.id=b.id;复制代码
15、如果明确知道只有一条结果返回,limit 1 能够提高效率
- 比如如下 SQL 语句:
select * from user where login_name=?;复制代码
- 可以优化为:
select * from user where login_name=? limit 1复制代码
- 自己明确知道只有一条结果,但数据库并不知道,明确告诉它,让它主动停止游标移动。
16、超过三个表最好不要 join
需要 join 的字段,数据类型必须一致,多表关联查询时,保证被关联的字段需要有索引。
例如:
left join
是由左边决定的,左边的数据一定都有,所以右边是我们的关键点,建立索引要建右边的。当然如果索引在左边,可以用right join
。
17、单表索引建议控制在5个以内
18、SQL 性能优化 explain 中的 type:至少要达到 range 级别,要求是 ref 级别,如果可以是 consts 最好
consts
:单表中最多只有一个匹配行(主键或者唯一索引),在优化阶段即可读取到数据。ref
:使用普通的索引(Normal Index)
。range
:对索引进行范围检索。当
type=index
时,索引物理文件全扫,速度非常慢。
19、业务上具有唯一特性的字段,即使是多个字段的组合,也必须建成唯一索引
- 不要以为唯一索引影响了
insert
速度,这个速度损耗可以忽略,但提高查找速度是明显的。另外,即使在应用层做了非常完善的校验控制,只要没有唯一索引,根据墨菲定律,必然有脏数据产生。
20.创建索引时避免以下错误观念
- 索引越多越好,认为需要一个查询就建一个索引。
- 宁缺勿滥,认为索引会消耗空间、严重拖慢更新和新增速度。
- 抵制惟一索引,认为业务的惟一性一律需要在应用层通过"先查后插"方式解决。
- 过早优化,在不了解系统的情况下就开始优化。
索引选择性与前缀索引
既然索引可以加快查询速度,那么是不是只要是查询语句需要,就建上索引?答案是否定的。因为索引虽然加快了查询速度,但索引也是有代价的:索引文件本身要消耗存储空间,同时索引会加重插入、删除和修改记录时的负担,另外,MySQL在运行时也要消耗资源维护索引,因此索引并不是越多越好。一般两种情况下不建议建索引。
第一种情况是表记录比较少,例如一两千条甚至只有几百条记录的表,没必要建索引,让查询做全表扫描就好了。至于多少条记录才算多,这个个人有个人的看法,我个人的经验是以2000作为分界线,记录数不超过 2000可以考虑不建索引,超过2000条可以酌情考虑索引。
另一种不建议建索引的情况是索引的选择性较低。所谓索引的选择性(Selectivity),是指不重复的索引值(也叫基数,Cardinality)与表记录数(#T)的比值:
Index Selectivity = Cardinality / #T复制代码
- 显然选择性的取值范围为
(0, 1]``,选择性越高的索引价值越大,这是由
B+Tree的性质决定的。例如,
employees.titles表,如果
title`字段经常被单独查询,是否需要建索引,我们看一下它的选择性:
SELECT count(DISTINCT(title))/count(*) AS Selectivity FROM employees.titles;+-------------+| Selectivity |+-------------+| 0.0000 |+-------------+复制代码
title
的选择性不足0.0001
(精确值为0.00001579),所以实在没有什么必要为其单独建索引。有一种与索引选择性有关的索引优化策略叫做前缀索引,就是用列的前缀代替整个列作为索引key,当前缀长度合适时,可以做到既使得前缀索引的选择性接近全列索引,同时因为索引key变短而减少了索引文件的大小和维护开销。下面以
employees.employees
表为例介绍前缀索引的选择和使用。假设employees表只有一个索引
,那么如果我们想按名字搜索一个人,就只能全表扫描了:
EXPLAIN SELECT * FROM employees.employees WHERE first_name='Eric' AND last_name='Anido';+----+-------------+-----------+------+---------------+------+---------+------+--------+-------------+| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |+----+-------------+-----------+------+---------------+------+---------+------+--------+-------------+| 1 | SIMPLE | employees | ALL | NULL | NULL | NULL | NULL | 300024 | Using where |+----+-------------+-----------+------+---------------+------+---------+------+--------+-------------+复制代码
- 如果频繁按名字搜索员工,这样显然效率很低,因此我们可以考虑建索引。有两种选择,建
或
,看下两个索引的选择性:
SELECT count(DISTINCT(first_name))/count(*) AS Selectivity FROM employees.employees;+-------------+| Selectivity |+-------------+| 0.0042 |+-------------+SELECT count(DISTINCT(concat(first_name, last_name)))/count(*) AS Selectivity FROM employees.employees;+-------------+| Selectivity |+-------------+| 0.9313 |+-------------+复制代码
显然选择性太低,`
选择性很好,但是first_name
和last_name
加起来长度为30
,有没有兼顾长度和选择性的办法?可以考虑用first_name和last_name的前几个字符建立索引,例如
,看看其选择性:
SELECT count(DISTINCT(concat(first_name, left(last_name, 3))))/count(*) AS Selectivity FROM employees.employees;+-------------+| Selectivity |+-------------+| 0.7879 |+-------------+复制代码
- 选择性还不错,但离0.9313还是有点距离,那么把last_name前缀加到4:
SELECT count(DISTINCT(concat(first_name, left(last_name, 4))))/count(*) AS Selectivity FROM employees.employees;+-------------+| Selectivity |+-------------+| 0.9007 |+-------------+复制代码
- 这时选择性已经很理想了,而这个索引的长度只有
18
,比
短了接近一半,我们把这个前缀索引建上:
ALTER TABLE employees.employeesADD INDEX `first_name_last_name4` (first_name, last_name(4));复制代码
- 此时再执行一遍按名字查询,比较分析一下与建索引前的结果:
SHOW PROFILES;+----------+------------+---------------------------------------------------------------------------------+| Query_ID | Duration | Query |+----------+------------+---------------------------------------------------------------------------------+| 87 | 0.11941700 | SELECT * FROM employees.employees WHERE first_name='Eric' AND last_name='Anido' || 90 | 0.00092400 | SELECT * FROM employees.employees WHERE first_name='Eric' AND last_name='Anido' |+----------+------------+---------------------------------------------------------------------------------+复制代码
性能的提升是显著的,查询速度提高了120多倍。
前缀索引兼顾索引大小和查询速度,但是其缺点是不能用于
ORDER BY
和GROUP BY
操作,也不能用于Covering index
(即当索引本身包含查询所需全部数据时,不再访问数据文件本身)。
总结
- 本文主要讲了索引优化的二十个原则,希望读者喜欢。
本篇文章
脑图
和PDF文档
已经准备好,有需要的伙伴可以回复关键词索引优化
获取。
关于MySQL索引优化规则是什么就分享到这里了,希望以上内容可以对大家有一定的帮助,可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到。